MoniPoly—An Expressive g-SDH-Based
Anonymous Attribute-Based Credential System
[Extended Version]

Syh-Yuan Tan and Thomas Grofs

School of Computing, Newcastle University, UK
{syh-yuan.tan, thomas.gross}@newcastle.ac.uk

Abstract. Modern attribute-based anonymous credential (ABC) sys-
tems benefit from special encodings that yield expressive and highly ef-
ficient show proofs on logical statements. The technique was first pro-
posed by Camenisch and Grof, who constructed an SRSA-based ABC
system with prime-encoded attributes that offers efficient AND, OR and
NOT proofs. While other ABC frameworks have adopted constructions
in the same vein, the Camenisch-Groff ABC has been the most expres-
sive and asymptotically most efficient proof system to date, even if it
was constrained by the requirement of a trusted message-space setup
and an inherent restriction to finite-set attributes encoded as primes. In
this paper, combining a new set commitment scheme and a SDH-based
signature scheme, we present a provably secure ABC system that sup-
ports show proofs for complex statements. This construction is not only
more expressive than existing approaches, it is also highly efficient under
unrestricted attribute space due to its ECC protocols only requiring a
constant number of bilinear pairings by the verifier; none by the prover.
Furthermore, we introduce strong security models for impersonation and
unlinkability under adaptive active and concurrent attacks to allow for
the expressiveness of our ABC as well as for a systematic comparison to
existing schemes. Given this foundation, we are the first to comprehen-
sively formally prove the security of an ABC with expressive show proofs.
Specifically, we prove the security against impersonation under the g-(co-
)SDH assumption with a tight reduction. Besides the set commitment
scheme, which may be of independent interest, our security models can
serve as a foundation for the design of future ABC systems.

1 Introduction

An anonymous attribute-based credential (ABC) system allows a user to obtain
credentials, that is, certified attribute set A from issuers and to anonymously

This work was supported in part by the European Research Council Starting
Grant “Confidentiality-Preserving Security Assurance (CASCAde)” under Grant GA
n°716980.

prove the possession of these credentials as well as properties of A. Anonymous
credentials were first proposed by Chaum [29] while the first practical ABC
system was introduced by Camenisch and Lysyanskaya (CL) [22] which uses
the signer’s signature on a committed, and therefore blinded, attribute as the
user credential. The proof of possession of a valid credential is a zero-knowledge
proof of knowledge on the validity of the signature and the well-formedness
of the commitment. This commit-and-sign technique has been employed by
ABC systems from RSA-based signature scheme [23] and pairing-based signa-
ture schemes [24, 4, 20, 27, 21, 6, 47, 16, 8, 11] on blocks of messages in which
the i-th attribute is fixed as the exponent to the i-th base. Therefore, the show
proofs has a computational complexity linear to the number of attributes in the
credential, in terms of the modular exponentiations and scalar multiplications,
respectively.

In contrast to the technique above which is termed as traditional encoding by
Camenisch and Grof [18, 19], they suggested a prime encoding for the SRSA-CL
signature scheme [23] to offer show proofs on AND, OR and NOT statements
with constant complexity for the prime-encoded attributes. Specifically, the
Camenisch-Grof (CG) construction separates the unrestricted attribute space S
into string attributes space and finite-set attributes space such that S = SgUSE.
The CG encoding uses a product of prime numbers to represent a finite-set at-
tribute set Ap € Sp in a single exponent, a technique subsequently applied to
graphs as complex data structures [35]. Prime encoding results in highly efficient
show proofs: each execution only requires a constant number of modular expo-
nentiations. However, the construction constrains Sgp to a set of pre-certified
prime numbers and increases the public key size!. Furthermore, the security of
the CG ABC system was only established on the properties of its show proofs
and not formally on the overall properties of the ABC system. Despite these
disadvantages, to the best of our knowledge, CG ABC system [18, 19] is the
only ABC system in the standard model that has show proof for AND, OR, and
NOT statements with constant complexity.

Related Works. The SDH-CL signature scheme [24, 20, 49] is a popular candi-
date for the ABC system based on the traditional encoding. It is also referred
as the BBS+ signature scheme [13, 4, 50, 52, 1, 6] or the Okamoto signature
scheme [43, 2]. Au et al. [4] and Akagi et al. [2] constructed provably secure ABC
systems on this foundation while Camenisch et al. [20] integrated a pairing-based
accumulator to yield an ABC system that supports revocation. Later, Sudarsono
et al. [50] applied the accumulator on Sg as in prime encoding and showed that
the resulting ABC system can support show proofs for AND and OR statements
with constant complexity. Yet, the accumulator requires a large public key size:
|Sr| finite-set attributes plus the corresponding |Sp| signatures. Inspired by the
concept of attribute-based signature, Zhang and Feng [52] solved the large pub-
lic key problem, while additionally supporting threshold statements (ANY) in

L If the prime numbers are not pre-certified, the show proofs have to include expensive
interval proofs.

show proofs, at the cost of having the credential size linear to |Ap|. Compar-
ing the traditional encoding-based ABC systems to the accumulator-based ABC
systems, the latter require more bilinear pairing operations in the show proofs,
while having either large public key or credential sizes.

There were some attempts to apply Camenisch et al.’s accumulator [20] and
its variants on P-signatures [37], LRSW-CL signature [36] and structure pre-
serving signatures [7, 48, 44] to support complex non-interactive zero-knowledge
(NIZK) show proofs. Among all, Sadiah et al.’s ABC system [48] offers the most
expressive show proofs. Considering only & = Sp, their ABC system allows
constant-size and constant-complexity NIZK show proofs for monotone formu-
las at the cost of issuing |P(AF)| credentials to every user where P(Ap) is
the power set of the user attribute set Ap. Instead of performing this expen-
sive process during the issuing protocol, Okishima and Nakanishi’s ABC sys-
tem [44] generates P(Sp) during key generation and inflates the public key
size with |P(SF)| signatures to enable constant-size non-interactive witness-
indistinguishable (NITWTI) show proofs for conjunctive composite formulas. There
are also ABC systems [8, 11] that were built on Pointcheval and Sanders’ sig-
nature [46]. The ABC system proposed by Bemmann et al. [8] combines both
traditional encoding and accumulator [42] to support monotone formulas under
the non-interactive proof of partial knowledge protocol [3]. Although it has sig-
nificantly shorter credential and supports unrestricted attribute space compared
to that of Sadiah et al.’s, its show proofs complexity is linear to the number of
literals in the monotone formula.

The findings on the use of accumulator in constructing ABC system cor-
respond to the observations in the ABC transformation framework proposed
by Camenisch et al. [17]. They discovered that the CL signatures are not able
to achieve constant-size NIZK show proofs without random oracle. The frame-
work takes in a structure-preserving signature scheme and a vector commit-
ment scheme to produce a UC-secure ABC system. Their instantiation supports
constant-size NIZK show proofs on subset statement and provably secure under
the common reference string model. Using the similar ingredients, Fuschbauer
et al. [34] constructed an ABC system that offers constant-size non-interactive
witness-hiding? (NIWH) show proofs on subset statement. The security models
in the two works, however, are not designed to cover expressive show proofs.
Other frameworks [21, 11] that formalized the commit-and-sign technique and
even those [48, 8, 44] support show proofs on complex statements also fall short
in this aspect.

Research Gap. Existing constructions yield considerable restrictions when ex-
pressive show proof is concerned: The SRSA-based CG scheme [18] and accumulator-
based schemes [50, 37, 7, 36, 48, 44] constrain the attribute space to finite-set
attributes (Ar € Sr) and require a trusted setup that inflates either the public-
key size or the credential size. Their expressiveness and the computational com-

2 Fuchsbauer et al.’s show proof includes sending a randomized credential but not a
committed credential [34]. The protocol is witness-hiding as it is not simulatable.

plexity are no better than the pairing-based constructions [4, 2, 52, 34, 8] and the
general ABC frameworks [17, 21, 11] alike, when only string attributes (Ag € Sg)
are considered. In addition, we observe a need for a systematic canonicalization
of security models for all mentioned schemes.

Our Contribution. We present a perfectly hiding and computationally binding
set commitment scheme, called MoniPoly, which supports set membership proofs
and disjointness proofs on the committed messages. Following the commit-and-
sign methodology, we combine the MoniPoly commitment scheme with SDH-
based Camenisch-Lysyanskaya signature scheme [24, 49] to present an efficient
ABC system that support expressive show proofs for AND, OR and k-out-of-n
threshold (ANY) clauses as well as their respective complements (NAND, NOR
and NANY). Our ABC system is the most efficient construction under the un-
restricted attribute space to-date, yet at least as expressive as the constructions
specially crafted for the restricted attribute space.

To the best of our knowledge, neither the constructions nor security models
of existing ABC systems allow for complex interactive show proofs. As an im-
mediate contribution, we rigorously define the necessary and stronger security
notions for ABC systems. Our notions for security of impersonation resilience
and unlinkability under adaptive active and concurrent attacks are stronger than
those of the state-of-the-art ABC systems [21, 17, 34, 44]. We prove the security
of our construction with respect to security against impersonation and linkabil-
ity in the standard model, especially offering a tight reduction for impersonation
resilience under the ¢-(co-)SDH assumption.

Organization. We organize the paper as follows. In Section 2, we briefly introduce
the related mathematical background and we present the MoniPoly commitment
scheme in Section 3. We present our ABC system which is a combination of
the MoniPoly commitment scheme with SDH-based CL signatures [24, 49] in
Section 4. Section 5 offers an evaluation of the MoniPoly ABC in terms of security
properties, expressivity as well as computational complexity in comparison to
other schemes in the field.

2 Preliminaries

2.1 Mathematical Tools

Bilinear Pairing. Let Gy, G2, Gr be groups of prime order p. Let g1 € G, g2 €
Gz and z,y € Z, where g1, g» are the generators, the bilinear pairing function is
e: Gy X Gy — G with the following properties:

1. Bilinearity: e(g7,g3) = (g1, 95) = e(g1,92)"™"
2. Non-degeneracy: e(g1,g2) # 1
3. Efficiency: e is efficiently computable.

Throughout this work, we will assume Type-3 pairing which has Gy # Gs.

Definition 1. Discrete Logarithm Assumption (DLOG). An algorithm C is said
t0 (tdiog; Ediog)-break the DLOG assumption if C runs in time at most tyig and
furthermore:

Prlz € Z, : C(g, ") = @] > ediog

for a negligible probability eqiog. We say that the DLOG assumption is (tdiog, Ediog) -
secure if no algorithm (tgiog, €diog)-solves the DLOG problem.

Definition 2. Discrete Logarithm with Auziliary Input (DLOGwAI) [30, 28].
An algorithm C is said to (tdiogwai, Ediogwai)-break the DLOGwAI assumption if C
runs in time at most ldiogwai and furthermore:

PI‘[Z‘ € Zp : C(gagw7 cee 791-‘1) = LL‘} > Edlogwai

for a negligible probability eqiogwai- We say that the DLOGwAI assumption is
(tdlogwai, Edlogwai)-secure if no algorithm (tdiogwais Ediogwai)-s0lves the DLOGwAI prob-
lem.

Definition 3. ¢—Strong Diffie-Hellman Assumption (SDH) [49]. An algorithm
C is said to (tsdn, Esdn)-break the SDH assumption if C runs in time at most tsgn
and furthermore:

_1
PI‘[l‘ € vac € ZP \ {—Z‘}] :C(gagzw .- 7gacq) = (gm+cvc)] Z Esdh

for a negligible probability esan- We say that the SDH assumption is (tsdh,Esdn)-
secure if no algorithm (tsgh, €sdn)-solves the SDH problem.

Definition 4. ¢—co-Strong Diffie-Hellman Assumption (co-SDH) [28]. An al-
gorithm C is said to (tcosdh, Ecosdn) -break the co-SDH assumption if C runs in time
at most teosan and furthermore:

1
Pr(z € Zp,c € Zpy \{—2}] : Clg1, 97, ., g7 192,95, 95) = (977, 0)] > Ecoscn

for a negligible probability ccosan. We say that the co-SDH assumption is (tcosdh, Ecosdh) -
secure if no algorithm (teosdh, Ecosdn)-solves the co-SDH problem.

Definition 5. ¢—Bilinear Strong Diffie-Hellman Assumption (BSDH) [28]. An
algorithm C is said to (tpsdn, Ebsdn)-break the BSDH assumption if C runs in time
at most tpsgn and furthermore:

Prjz € Zp,c € Z, \ {—z}] :
q q 1
C(ghgfa""gin 592’957-”795):(e(glaQZ)m+C7c)]Z€bsdh

for a negligible probability cpsan. We say that the BSDH assumption is (tbsdh; Ebsdh) -
secure if no algorithm (tpsdh, Ebsdh)-solves the BSDH problem.

Definition 6. Relation (R) [32]. Let R be a relation {(z,w)} testable in poly-
nomial time where |x| = |w|. For any statement x, its witness set w(x) =
{wy,...,|w(x)|} is the set of w such that (x,w) € R.

Definition 7. Proof of Knowledge System [32]. An interactive proof of kowledge
system over R is a pair of algorithms (P,V) satisfying:

1. Completeness: The verifier V(x) always accepts a true statement produced by
the prover protocol P(x,w; € w(x)) for ¥(xz,w) € R, except with a negligible
probability ¢.

2. Soundness: The verifier V(x) always rejects a false statement produced by
any prover protocol P*(x,w*), and any knowledge extractor M (x,w*; P*)
that uses P* as subroutine, except with a negligible probability.

Definition 8. Witness Hiding [32]. Let Gen be a generator for R and a state-
ment x, (P, V') is witness hiding on (R, Gen) if a new witnesses w € w(x) cannot
be computed by any verifier protocol V*(x) and witness extractor M (z; V*, Gen)
after interacting with P(z,w,; € w(z)), except with a negligible probability.

2.2 Digital Signature Scheme

A digital signature scheme is defined by three algorithm as DS = (KeyGen, Sign, Verify)
as follows:

1. KeyGen(1*) — (pk, sk): A pair of public and secret keys are generated based
on the security parameter input 1*. The public key pk can be made known
to the public while the secret key sk is kept secret by the signer.

2. Sign(m, pk, sk) — o: The signer uses the secret key sk to sign on a message
m, generating a signature o.

3. Verify(m,o,pk) — 1/0: The verifier takes the signer’s public key pk and o
as the input to ensure that the signature is genuinely signed by the signer.
If the signature is verified, the algorithm returns 1 and 0 otherwise.

2.2.1 Unforgeability We refer to the security notion of strong existential
unforgeability under chosen message attacks (seuf-cma) [12]. The security model
is defined as the following game between a forger F and a challenger C:

Game 1 (seuf — cma(F,C))

1. Setup: C runs KeyGen and sends pk to F.

2. Phase 1: F is allowed to issue queries to the Sign oracle.

3. Challenge: F outputs a challenge message m* which may have been queried
to Sign oracle previously.

4. Phase 2: F can continue to query the Sign oracle as in Phase 1.

5. Forgery. F oulpuls a message and signature pair (m*,o*) which is differ-
ent from all the previous replies from the Sign oracle. F wins the game if
Verify(m*, o*, pk) outputs 1.

Definition 9. A forger F is said to (tsg, €sig)-break the seuf-cma security of a
signature scheme if F runs in time at most tsz and wins in Game 1 such that:

Pr{Verify(m™, 0™, pk) = 1] > g4ig

for a negligible probability eig. We say that a signature scheme is seuf-cma-secure
if no forger (tsg, €sig)-wins Game 1.

We adapt the notation of random self-reducibility for identification scheme [39]
to that of witness hiding proof system [32].

Definition 10. Random Self-Reducibility. A witness hiding proof system (Gen, P, V')
is said to be random self-reducible if there are three algorithms Rerand, Derand
and Tran such that, for all key pair (pk, sk) generated by Gen:

1. Rerand(pk) outputs (pk', p) where pk’ has the same distribution to the pk”
of a newly generated key pair (pk”, sk”) by Gen.

2. Derand(pk, pk’, sk, p) outputs a valid sk with respect to pk for any valid key
pair (pk', sk’).

3. Tran(pk, pk’, p,7(py) = (P(pk',wi € w(pk’)),V(pk"))) transforms a valid
transcript WERV) into w(pyy = (P(pk,w; € w(pk)),V(pk)) which is valid
with respect to pk.

2.3 The SDH-based CL Signature Scheme

Camenisch and Lysyankaya introduced a technique [24] to construct secure
pairing-based signature schemes which supports signing on committed messages.
They also showed that their technique can extract an efficient SDH-based sig-
nature scheme from Boneh et al.’s group signature [13] scheme but no security
proof was provided. This scheme was later proven to be seuf-cma-secure with a
tight reduction [49] to the SDH assumption in the standard model. We describe
the SDH-CL signature scheme [24, 20, 49] as follows:

KeyGen(1%): Construct three cyclic groups Gi,Go, G of order p based on an
elliptic curve whose bilinear pairing is e : G; x Gy — Gp. Select random gen-
erators a,b,c € G1, g2 € G2 and a secret value z € Z;. Output the public key
pk = (e,G1,Ga,Gr,p,a,b,¢,g2, X = g%) and the secret key sk = x.

Sign(m, pk, sk): On input m, choose the random values s,t € Z,, to compute

v = (ambsc)ﬁ. In the unlikely case in which z +t =0 mod p occurs, reselect
a random t. Qutput the signature as sig = (¢, s, v).

Verify(m, sig, pk): Given sig = (t,s,v), accept the signature if the following
holds:

e(v, Xgb) = e((a™b*c) 77, g5 ")
= e(a"b’c, g2)

Theorem 1. [{9] SDH-based CL signature scheme is seuf-cma-secure in the
standard model if the Strong Diffie-Hellman problem is (tsan, €sdn)-hard.

Algorithm 1 MPEncode(): Encode attribute set into coefficients {m;}o<i<n

Input: Attribute set A = {mo,...,mn—1} and prime order p.
Output: L = {mg,...,my}.
Post-conditions: .1 ' mz" = (z' +mqg) -+ (2' + mp_1)
1: L{IA]+1] +1

2: if |A| =1 then

3: L[0] «+ AJ0]

4 return L

5: end if

6: L[0] «+ A[0] x A[1] mod p

7: L[1] - A[0] + A[1] mod p
8: for i < 2 to |A| do
9: for j + i to 0 do

10: if j =i then

11: L[i] + L[i — 1] + A[4]

12: else if j =1 then

13: L[j] + Ljj] x Ali] + L[y — 1]
14: L[0] «+ L[0] x Ald]

15: else

16: L[j] + Ljj] x Ali] + L[y — 1]
17: end if

18: end for

19: end for

20: return L

3 MoniPoly Set Commitment Scheme

The key idea of set commitment schemes, such as ours and similar ones [38, 17,
34], is to transform a message m € Z,, into (z'+m) where 2’ € Z,, is not known to
the user. Multiple messages then have the form f(z') =[]\, (2’ + m;). Overall,
the transformation yields a monic polynomial. This monic polynomial, in turn,
can be rewritten as f(z') = .7 ma’. Its coefficients m; € Z? can be efficiently
computed?, for instance, using the encoding algorithm MPEncode() : Ly — ZZH
as depicted in Algorithm 1.

What makes our commitment scheme unique is that we treat the opening
value as one of the roots in the monic polynomial, giving the commitment scheme
its name MoniPoly. Folding the opening value into the monic polynomial yields
compelling advantages, first and foremost, enabling a greater design space for
presentation proofs.

3 Papamanthou et al. [45] suggested to compute the coefficients of monic polyno-
mial using a special algorithm for polynomial interpolation that has complexity
O(nlogn). However, the algorithm requires n|p™ — 1 for some integer m that can-
not be fulfilled by our commitment scheme in the practice. Specifically, in order to
allow our commitment scheme to remain secure under the DLOGwAI assumption,
the prime order p cannot have divisors di,ds for p — 1 and p+ 1, respectively, where
(logp)® < d1 < /p and (logp)* < d2 < /P [30].

Hence, while related schemes [38, 17, 34] support subset opening, our scheme
supports opening of intersection sets and difference sets, in addition. Thus,
MoniPoly is considerably more expressive. Furthermore, generally, the presen-
tation proofs created on MoniPoly’s construction are more efficient than other
commitment-based frameworks. Finally, treating the opening value as a root of
the monic polynomial yields a scheme that is closely aligned with well-established
commitment scheme paradigms, which, in turn, fits into a range of popular sig-
nature schemes and enables signing committed messages.

3.1 Interface
We define MoniPoly by seven algorithms
MoniPoly = (Setup, Commit, Open, Openlntersection,

Verifylntersection, OpenDifference, VerifyDifference)

as follows:

1. Setup(1¥,n) — (pk, sk). A pair of public and secret keys (pk, sk) are gener-
ated by a trusted authority based on the security parameter input 1. The
message domain D is defined and n — 1 is the maximum messages allowed.
If n is fixed, sk is not required in the rest of the scheme.

2. Commit(pk, A,0) — (C). On the input of pk, a message set A = {my,...,m,_1} €
D"~ ! and a random opening value o € D, output the commitment C.

3. Open(pk,C, A,0) — 1/0. Return 1 if C is a valid commitment to A with the
opening value o under pk, and return 0 otherwise.

4. Openlntersection(pk, C, A, 0, (A’,1)) — (I, W)/ L.If |A’/nA| > [holds, return
an intersection set I = A’ N A of length [with the corresponding witness W,
and return an error L otherwise.

5. Verifylntersection(pk, C, (I, W), (A’,1)) — 1/0. Return 1 if W is a witness for
S being the intersection set of length [for A’ and the set committed to in
C, and return 0 otherwise.

6. OpenDifference(pk, C, A, 0, (A", 1)) — (D, W).If |A’ — A| = |A’'NA| > [holds,
return the difference set D = A’ — A of length [with the corresponding
witness W, and return L otherwise.

7. VerifyDifference(pk, C, (D, W), (A’,1)) — 1/0. Return 1 if W is the witness
for D being the difference set of length I for A’ and the set committed to in
C, and return 0 otherwise.

3.2 Security Requirements

Definition 11. A set commitment scheme is perfectly hiding if every commit-
ment C = Commit(pk, A,0) is uniformly distributed such that there exists an
o' # o for all A’ #£ A where Open(pk,C, A’ 0') = 1.

Definition 12. An adversary A is said to (tvind, €bind)-break the binding security
of a set commitment scheme if A runs in time at most tyng and furthermore:

Pr[Open(pk, C, A1, 01) = Open(pk, C, Az, 02) = 1] > pind-

for a negligible probability ening and any two pair (A1, 01), (Az,02) output by A.
We say that a set commitment scheme is (tpind, Ebind)-Secure with respect to bind-
ing if no adversary (toind, €bind) -breaks the binding security of the set commitment
scheme.

3.3 Construction

We describe the MoniPoly commitment scheme as follows:

Setup(1*). Construct three cyclic groups Gi,Gs,Gr of order p based on an
elliptic curve whose bilinear pairing is e : G; X Gy — Gp. Select random gen-
erators a € G1, go € Gy and a secret values z’ € Z,,. Compute the values

m

ap = a,a; = a“/,...,an =a® ,Xg=g2,X1 = g%',,...,Xn = g%m to output the
public key pk = (e,G1,G2,Gr,p, {a;, Xito<i<n) and the secret key sk = (a).
Note that sk can be discarded by the authority if the parameter n is fixed.

Commit(pk, A, 0). Taking in a message set A = {my,...,m,_1} € Zj and the
random opening value o € Zy, output the commitment as
1

n
O — a(m’+o) [Tj=0 (@ +my) H ™
0 J
Jj=0

where {m;} = MPEncode(A U {o0}).

Open(pk,C, A, 0). Return 1if C' = H?:o a;” holds where {m;} = MPEncode(AU
{0}) and return 0 otherwise.

Openlntersection(pk, C, A, 0, (A’,1)). If |A’ N A| > holds, return an intersection
set I = A’ N A of length | and a witness W such that:

x'-i—o e a:'-i—m'
C:aé)L ea (e’ +my)

((2’ +o) Hmj E(AI)(fCIJij)) H"‘JEI(I/+mj)
= ao

Hmj 61(1/"""%’)

n—l

W
11
j=0
— W]-_-[7nj EI(x/J'_mj)

and return | otherwise, where {w;} = MPEncode(A4 — I).

10

Verifylntersection(pk, C, I, W, (A’,1)). Return 1 if

1A |A"| - L
e CHa;“’j,Xo —e|W H a?2’j,HX]'.j
j=0 j=0 j

i=0

holds and return 0 otherwise, where {i;} = MPEncode(I), {m; ;} = MPEncode(A’)
and {my ;} = MPEncode(A’ — I). The correctness is as follows:

14|

my
e|C H aj 1 s XO
j=0

|4’
=e(C,Xp)e H a;-“’j , Xo
3=0

(@' +0) T, ca (&' +my) IT,..cas (@' +m;)
=e <a0 €A 7Xvo) € (ao €A 7X}))

(@' +0) I, ccamny @' +my) Tl er(a’+my) [l ecar—n@+my) Tl er(@’+my)
— J J J J
=e (ao , Xo el a , Xo
L A7~ !

_ 1j mz2,; H 1
=e (W][[x7]e a; " 1] X;

7=0 7=0 7=0

|A/|—1 !
=e|W] o>, I] X}

Jj=0 Jj=0

OpenDifference(pk, C, A, o, (A',1)). If |A’ N A| > [holds, return a difference set
D = A’ — A of length [and the witness (W7, Wa) such that:

(@ +0) T ca (" +m5)

C=a,
q(x’)]_[ijD(z’erj) r(a’)
= Qg)
-l Ay,
~(Ma) T
7=0 7=0
— Wl‘i($,)W

and return | otherwise. The exponents ({wy ;},{wz j}) = MPEncode(A)/MPEncode(D)
are computed using expanded synthetic division such that {w, ;} are the coeffi-
cients of quotient ¢(z') and {wy ;} are the coefficients of remainder r(z’). Specifi-
cally, let the polynomial divisor be d(z’) = Zé d;jz"7 where {d;} = MPEncode(D),
the monic polynomial f(z') in the commitment C' = ag (@) can be rewritten as
f(&") = d(z")g(z") + r(2’). Note that Wy # 1g, whenever d(z’) cannot divide

11

f(x"), i.e., the sets A and D are disjoint.

VerifyDifference(pk, C, (D, (W1, W3)), (4’,1)). Return 1 if Wy # 1g,, Ws # 1g,
and

1A' All-

€ CW271 Ha;l’j,XO =e H m2]

=0 =0

=N
><Q_

hold and return 0 otherwise, where {d;} = MPEncode(D), {m; ;} = MPEncode(A’)
and {my ;} = MPEncode(A" — D). The correctness is as follows:

|4’
e Cw;qjﬁmp%
§=0
|4’
=e(CW; !, Ham“ Xo

’ ma ’ CE'erj
= e (a6) e (?JH< {XQ

N c(ar—py(@'+m; m;ep (@' +m;
e (ag(z Ya(z),Xo) . (a(l)_[mjem p)(.)’XCIJ_I el))

Sy Wi T d(z’ d
:e(aojo ! ,Xo(m) e Ham27X(I
|A'| =1 T
; d
=e|m [T o [T X7
j=0 j=0

Remark 1. In the security analysis of MoniPoly, we will take a different approach
compared to the previous constructions [38, 17, 34]. We consider the perfectly
hiding property and the conventional computational binding property [31] that
only requires an adversary cannot present two pair (A;, 01) and (As, 02) such that
Commit(pk, A1, 01) = Commit(pk, Az, 02). We will show in Section 3.4 that this
conventional binding property is a superset of formers’ subset binding properties.

3.4 Security Analysis

Theorem 2. The MoniPoly commitment scheme is perfectly hiding.

Proof. Given a commitment C' = éw o Il= @ em)) , there are |Z5| — 1 possible

pairs of ((mf},...,m),_1),0") # ((m1,...,mp_1),0) which can result in the same

12

C. Furthermore, for each committed message set, there is a unique o such that:

n—1
dlog, (C) = (z' +0) H(:l:’ +m;) mod p
j=1
dlo c
0= —n_lg“?() _ ' mod p
Since o is chosen independently of the committed messages {m1,...,my_1}, the
latter is perfectly hidden. O

The following theorem considers an adversary which breaks the binding prop-
erty by finding two different message sets A and A* which can be of different
lengths such that |A| > |A*].

Theorem 3. The MoniPoly commitment scheme is (toind, Ebind) -S€CUTE Wilh Te-
spect to the binding security if the co-SDH problem is (tcosdh, Ecosdn)-hard such
that:

Ebind = Ecosdh tbind = tcosdh + T(n)

where T'(n) is the time for dominant group operations in G; to extract a co-SDH
solution where n is the total of committed messages plus the opening value.

Proof. We show that if there exists an adversary Aping which can find two pair
(A,0) and (A*, 0*) such that Open(pk, C, A,0) = Open(pk,C, A*,0*) = 1, there
exists a challenger C which can break the co-SDH assumption with the help
of Ab.nd C sets the co-SDH challenge as the pubhc key pk = (ap = g1,01 =
g an =g Xo=g2, X1=¢%,..., X, = ¢&") and sends to Aping-

When Aping outputs such two pair (A, o) and (A*, 0*), we have a(x o) [Tim (@' +ma) _

aéxq_o*) Hﬁ:l(x#m:). In order to ease the explanation, we view A = {mg, ..., my, 0}
and A* = {m},...,mj.,0"} where 1 < k* < k < n — 1. We first consider
the case of k* = k which implies |[A* N A = 1 for 0 < < |A] — 2. By
the setting of A and A*, there are at least two unique elements that exist
in A but not in A*. Assume o € A is one of the unique elements such that
Jz+@Hfdm+mn RARICR . Zﬁzm%r+@+dlﬁt“2}“w%*d):

MPEncode (A*)/MPEncode({o}) and {z;}o<i<x = MPEncode(A — {o}), C can
extract a solution (o, gm’1+°) for the co-SDH problem as follow:

k

@4®Hmewm) w+o) Zy (@' +m])

@aér +o) [Ti_, (2" +mi) _ g(x)(z' +0)+d

(@)t 55 TIE, (@' +m)
<ag = ay
d—l

3 k k*
z’+o __ z; —z; _ %_*_a
Say T = a; a; = g='+o.
=0 1=0

13

Since Open(pk,C, A — {0}, 0) = Open(pk, C, A* — {0*},0*) = 1 implies C' =
Commit(pk, A, 0) = Commit(pk, A*, 0*), Apind also can help C in extracting a SDH
solution by breaking the binding property of the witness W in Openlintersection
algorithm and that of the witness (W7, W) in OpenDifference algorithm under
the same setting. This is because Aping can find A* # A yet Commit(pk, A —
{o0},0) = Commit(pk, A* — {0*},0%) such that: (1) |[A* N A = [and fulfills
|A’ N A*| = |A’ N A| = [for the witness in set intersections, (2) |A* — A| = [and
fulfills |A’ — A*| = |A’ — A| = [for the witness in set differences. In precise, from
the sets in (1), we have

Openlntersection(pk, Commit(pk, A — {o},0), A — {o},0, (4",1))
= Openlntersection(pk, Commit(pk, A* — {0*},0%), A* — {0*}, 0%, (A',1))

where 0 <1 < |A'| < |A| — 2, and from the sets in (2), we have

OpenDifference(pk, Commit(pk, A — {0}, 0), A — {0}, 0, (A,]))
= OpenDifference(pk, Commit(pk, A* — {0*},0%), A* — {0*}, 0%, (A',1))

where 2 < [< |A’| < |A|. In either case, it must be Commit(pk, A — {0},0) =
Commit(pk, A* — {0*},0") and C can extract a SDH solution.

In the case of k* < k, the calculations above work in the similar way except
the value | must be within 0 < [< |A’| < |A*| — 1 and the value [must be
within 2 < [< |A’| < |A*| — 1. Therefore, in any case of k* < k, Aping can
break the binding property and C can find a SDH solution. Since C simulates
the experiment perfectly, we have eping = €cosdn. Next, compared to the time
thind taken by Apind, C used only tcosan plus O(n) group operations in G; to
find the co-SDH solution. Denoting the extra time taken by C as T'(n) gives
thind — T'(n) = teosdn as required. ad

As the security analysis covers the set difference and set intersection operations,
the binding property holds in AND, OR, ANY, NOR, NANY and NAND proofs
as well. The polynomial binding, evaluation binding and batch binding proper-
ties in Kate et al.’s polynomial commitment and its variants [38, 17, 34| can
be viewed as a subset of our binding property, since they support only subset
operations. Moreover, our proof does not rely on the stronger bilinear variant of
SDH assumption and this shows that bilinear pairing operation does not help in
breaking the binding property.

4 Attribute-Based Anonymous Credential System

Before presenting the formal definition of ABC system, we briefly define the
attribute set A and the access policy ¢ in our proposed ABC system which are
closely related to MoniPoly’s opening algorithms. Informally, we view a relation
between two attribute sets as a clause. Clauses can be accumulated using the
logical A operator in building the composite statement for an access policy.

14

Table 1: Syntax and semantics for an access policy ¢.

(a) BNF grammar (b) Truth table with respect to input A
BNF Clause Truth Condition
attr ;1= <attribute>=<value> OR(4") |[A"'NA]l>0
set 1= attr,set | attr ANY(1 <l < |A|,A) |A'NnA|I>1
con ::= AND | NAND | OR | NOR AND(A’) AN Al =4
cont ::= ANY | NANY NOR(A') |A'NAl >0
clause ::= con(set) | cont(l,set) NANY (1 << |A'[,A") [A'N Al >1
stmt 1= clause A stmt | clause NAND(A’) |A" N A] = |A|

policy ::= stmt(set) | L

Note: con = connective,
cont = connective with threshold

Attribute We view a descriptive attribute set A = {mg,...,m,} as a user’s
identity. To be precise, an attribute m is an attribute-value pair in the format
attribute=value and A is a set of attributes. For instance, the identity of a user can
be described as: A = {“gender = male”, “name = bob”, “ID = 123456”, “role =
manager”, “branch = Y” }.

Access Policy An access policy ¢ as defined by the BNF grammar in Table
1 expresses the relationship between two attribute sets A and A’. An access
policy ¢ is formed by an attribute set A as well as a statement stmt that spec-
ifies the relation between A and A’. We have some additional rules for the ¢
where we require |[A| = n > 1 and |A’| < n. Besides, in the special case of
|A’| = 1, the connective must be either AND or NAND. An access policy ¢
outputs 1 if the underlying statement is evaluated to true and outputs 0 oth-
erwise. Taking the attribute set A above as an example, we have ¢gmi(A) =
PanND(A7)r0OR(A,) (A) = 1 for the attribute sets A7 = {“role = manager”} and
Al = {“branch = X", “branch = Y”, “branch = Z”}. Note that the attribute set
A’ has been implicitly defined by stmt and we simply write ¢sm in the subse-
quent sections when the reference to the attribute set A is clear.

4.1 Interface

We define an attribute-based anonymous credential system by five algorithms
ABC = {KeyGen, Obtain, Issue, Prove, Verify} as follows:

1. KeyGen(1%,1™) — (pk,sk): This algorithm is executed by the issuer. On
the input of the security parameter k£ and the attributes upper bound n, it
generates a key pair (pk, sk).

2. (Obtain(pk, A), Issue(pk, sk)) — (cred/ L): These two algorithms form the
credential issuing protocol. The first algorithm is executed by the user with

15

the input of issuer’s public key pk and an attribute set A. The second al-
gorithm is executed by the issuer and takes as input the issuer’s public key
pk and secret key sk. At the end of the protocol, Obtain outputs a valid
credential cred produced by Issue or 1 otherwise.

. (Prove(pk, cred, gstmt), Verify(pk, dstme)) — (1/0): These two algorithms form

the credential presentation protocol. The second algorithm is executed by
the credential verifier which takes as input the issuer’s public key pk and has
the right to decide the access policy ¢stmt- The first algorithm is executed
by the credential prover which takes as input the issuer’s public key pk,
user’s credential cred and an access policy ¢smt such that ¢dgmi(A4) = 1. If
dstmt(A) = 0, the credential holder aborts and Verify outputs 0. If ¢ = L,
prover and verifier completes a proof of possession which proves the validity
of credential only instead of a show proof which additionally proves the
relation between A and A’. At the end of the protocol, Verify outputs 1 if it
accepts prover and outputs 0 otherwise.

In the following, we define the key security requirements for an anonymous

credential system in the form of impersonation, anonymity and unlinkability.

4.2 Security Requirements

Table 2: Types of adversary by attack abilities.
Attack

Protocol ____ """
Passive Active

Issuing 1 2
Presentation 3 4

4.2.1 Impersonation. The security goal of an ABC system requires that it
is infeasible for an adversary to get accepted by the verifier in the show proof.
Before defining the impersonation security model for graph signature scheme,
we define the types of adversary according to their abilities in Table 2:

1.

2.

Type 1: Adversary has access to the signing protocol transcript. This ability
is represented by having access to an IssueTranscript oracle.

Type 2: In addition to Type 1 ability, the adversary can corrupt the users.
This additional ability is represented by having access to the Obtain oracle
of issuing protocol.

Type 3: Adversary has access to the presentation protocol transcript. This
ability is represented by having access to a PresentTranscript oracle.

Type 4: In addition to Type 3 ability, the adversary can corrupt the verifier.
This additional ability is represented by having access to the Verify oracle in
presentation protocol.

16

We denote the adversary according to their ability as Aj,.As, A3 and Ay re-
spectively. These four adversaries can be combined to give another four types
of stronger adversaries: A; 3 = { A1, As}, A1 4 = {A1, As}, As 3 = {A2, A3} and
Az 4 = {Az, A4}. Note that having the ability of corrupting a user implies the
ability of acting as a prover in the presentation protocol, which is represented
by having access to the Prove oracle. However, Obtain and Prove oracles do not
cover the functionality of IssueTranscript which produces issuing transcripts of
the uncorrupted user.

In this work, we consider only the strongest adversary As 4 and we allow
it to adaptively issue concurrent queries. We define our security model as the
security against impersonation under active and concurrent attacks (imp-aca) in
the game between an adversary A and a challenger C as follows.

Game 2 (imp —aca(A4,C))

1. Setup: C runs KeyGen(1¥,1") and sends pk to A.

2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and
Verify oracles where he plays the role of user, prover and verifier, respectively,
on any attribute set A; of his choice in the i-th query. A can also issue queries
to the IssueTranscript oracle which takes in A; and returns the corresponding
transcripts of issuing protocol.

3. Challenge: A outputs the challenge attribute set A* and its corresponding
access policy ¢k such that ¢ (A;) = 0 and ¢%,,(A*) = 1 for every A;
queried to the Obtain oracle during Phase 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-
tion that it cannot query an attribute set A; to Obtain such that ¢%.(A;) = 1.

5. Impersonate: A completes a show proof as the prover with C as the verifier
for the access policy ¢k (A*) = 1. A wins the game if C outputs 1.

Definition 13. An adversary A is said t0 (timp, Eimp)-break the imp-aca security
of an ABC system if A runs in time at most timp and wins in Game 2 such that:

PI‘[(A, Vean(pk7 ¢:tmt)) = 1} 2 gimp

for a negligible probability cimp. We say that an ABC system is imp-aca-secure if
no adversary (timp, €imp)-wins Game 2.

Note that we reserve the term unforgeability for seuf-cma of the signature
scheme as defined in Game 1, in contrast to some contributions in the liter-
ature [2, 17, 21, 47, 34, 11]. One can view our impersonation notion as the
stronger version of the misauthentication resistance from the ABC systems with
expressive show proofs |7, 48, 44] which does not cover the active and concurrent
adversary besides disallowing adaptive queries. We also introduce a new oracle,
namely, IssueTranscript that covers the passive adversary for the issuing proto-
col. This makes our security definition more comprehensive than that by related
works [21, 17, 34, 11].

17

Similar to the ABC systems [17, 34] which supports subset show proofs, we
consider only show proofs in the security game above but not the proof of posses-
sion which proves only the validity of credential and nothing on the relationships
between attribute sets, i.e., ¢pstmt» =_L. This is because A can trivially cheat by
using any corrupted credential to generate a proof of possession, if the ABC
system offers anonymity and unlinkability. Anyway, we note that the show proof
for ganp(a=)(A*) in the security game can subsume a proof of possession where
we have A that “honestly” impersonates using the challenge attribute set A* as
it claims it would. Therefore, when we mention show proof, we mean both proof
of possession and show proof unless otherwise specified.

4.2.2 Anonymity. Anonymity requires that an adversary cannot recover the
identity of a user from the issuing protocol and the show proofs. The security
model for full anonymity under active and concurrent attacks (anon-aca) is de-
fined as a game between an adversary A and a challenger C:

Game 3 (anon —aca(A,(C))

1. Setup: C runs KeyGen and sends pk, sk to A.

2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove
and Verify oracles where he plays the role of user, issuer, prover and verifier,
respectively, on any attribute set A; of his choice in the i-th query. A can
also issue queries to a Corrupt oracle that takes in a transcript of issuing
protocol or presentation protocol whose user or prover, respectively, is C and
returns the entire internal state, including the random seed used by C in the
transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets Ay, A1
and the access policy ¢%,.. which he wishes to challenge such that ¢%,..(Ao) =
Ohmi(A1) = 1. A is allowed to select Ao, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing the challenge bit b €
{0,1} and interacts as the user with A as the issuer to complete the protocol

(Obtain(pk, Ap), Issue(pk, sk)) — cred,.

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocol

(Prove(pk, credy, pmt), Verify(pk, ¢5me)) — 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.
5. Guess: A outputs a guess b’ and wins the game if b’ = b.

Definition 14. An adversary A is said to (tano, €ano)-break the anon-aca-security
of an ABC system if A runs in time at most t,n, and wins in Game 3 such that:

1
| Pr[b =b"] — 5\ > €ano

18

for a negligible probability c,no. We say that an ABC system is anon-aca-secure
if mo adversary (tano,€ano)-wins Game 3.

Different from the anonymity notion in the ABC systems [2, 52, 7, 27, 6,
48, 34, 16, 44] which consider the anonymity in the show proofs only, the full
anonymity notion considers both issuing protocol and show proofs as in Blémer
et al.’s notion [47], yet with an extra Corrupt oracle. It is also stronger than the
anonymity notion [34, 2] which assumes an adversary can collude with issuer but
does not know sk.

Following the definition of our full anonymity security, the ABC systems
which use non-blind issuing protocol are obviously not fully anonymous because
the adversary can always obtain A, in plain by acting as the issuer of the chal-
lenge issuing protocol. Note that this is true even when we consider the weaker
adversary A; from Table 2 that only knows the transcript of the challenge is-
suing protocol from the IssueTranscript oracle. As a side note, we discover an
ABC system [34] that cannot meet the requirement of such weak anonymity,
though the user attributes are committed before sending to the issuer. We dis-
cuss the vulnerability and the corresponding security patch for the ABC system
in Appendix 5.2.4.

4.2.3 Unlinkability. Unlinkability requires that an adversary cannot link
the attributes or instances among the issuing protocols and the presentation
protocols. We consider two types of unlinkability notions, namely, full attribute
unlinkability and full protocol unlinkability. We require an adversary after in-
volving in the generation of a list of credentials, cannot differentiate the sequence
of two attribute sets in the full attribute unlinkability. The security model for full
attribute unlinkability under active and concurrent attacks (aunl-aca) is defined
as a game between an adversary A and a challenger C.

Game 4 (aunl — aca(A4,C))

1. Setup: C runs KeyGen and sends pk, sk to A.

2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove
and Verify oracles where he plays the role of user, issuer, prover and verifier,
respectively, on any attribute set A; of his choice in the i-th query. A can
also issue queries to an additional oracle, namely, Corrupt which takes in a
transcript of issuing protocol or show proofs whose user or prover, respec-
tively, is C and returns the entire internal state, including the random seed
used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets Ay, Ay
and the access policy ¢%,.. which he wishes to challenge such that % (Ao) =
Phmi(A1) = 1. A is allowed to select Ay, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing a challenge bitb € {0, 1}
and interacts as the user with A as the issuer to complete the protocols in
the order:

(Obtain(pk, Ay), Issue(pk, sk)) — credy,

19

(Obtain(pk, A1_y), Issue(pk, sk)) — credi_p.
Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pk, credy, ¢gmt), Verify(pk, dgme)) — 1,

stmt

(Prove(pk, Credlfbv ¢:tmt)7 Verlfy(pk, d)*)) - 1

stmt

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.
5. Guess: A outputs a guess b’ and wins the game if b’ = b.

Definition 15. An adversary A is said to (taunl, €aunl) -break the aunl-aca-security
of an ABC system if A runs in time at most tyyn and wins in Game 4 such that:

1
| Pr[b=b] — §| > Eaunl

for a negligible probability e,,n. We say that an ABC system is aunl-aca-secure
if no adversary (taunl, Eaunt)-wins Game 4.

Our full attribute unlinkability is more generic than that in Camenisch et al.’s
ABC transformation frameworks [17] where we assume the challenged attribute
sets Ag, A1 are not equivalent such that Ay # A;. Besides, unlike Ringers et
al.’s unlinkability notion [47], ours covers both issuing and show proofs as in
Camenisch et al.’s privacy notions [21], though the latter does not have a Corrupt
oracle while the former does.

On the other hand, as far as we know, the full protocol unlinkability has not
been considered before. This notion requires an adversary after involving in the
generation of a list of credentials, cannot relate an instance of issuing protocol
and an instance of a show proof that are under the same credential. The full
protocol unlinkability under active and concurrent attacks (punl-aca) is defined
as a game between an adversary .4 and a challenger C:

Game 5 (punl —aca(A4,(C))

1. Setup: C runs KeyGen and sends pk, sk to A.

2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove
and Verify oracles where he plays the role of users, issuer, provers and ver-
ifier, respectively, on any attribute set A; of his choice in the i-th query. A
can also issue queries to an additional oracle, namely, Corrupt which takes
in a transcript of issuing protocol or show proofs whose user or prover, re-
spectively, is C and returns the entire internal state, including the random
seed used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets Ay, A1
and the access policy ¢, which he wishes to challenge such that ¢%,..(Ag) =
Ormi(A1) = 1. A is allowed to select Ay, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing two challenge bits

20

b1,b2 € {0,1} and interacts as the user with A as the issuer to complete
the protocols in the order

(Obtain(pk, Ay,), Issue(pk, sk)) — credy,,

(Obtain(pk, A1_yp,), Issue(pk, sk)) — credy_p, .

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the order

(Prove(pk, credy, , prme)» Verify(pk, ome)) — 1,

(Prove(pk, cred; —p,, Pmt), Verify(pk, ¢lme)) — 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guessed pair of issuing protocol transcript o,y and
show proof transcript w(p) and wins the game if the pair is under the same

credential such that cred = cred

T(0,I) T™(P,V) "

Definition 16. An adversary A is said to (tpuni, €punt)-break the punl-aca-security
of an ABC system if A runs in time at most tpun and wins in Game 5 such that:

| Pr[cred

1
T, C’redﬂ'(P‘V)] - §| 2 Epunl
for a negligible probability epuni. We say that an ABC system is punl-aca-secure
if no adversary (tpuni, Epun)-wins Game 5.

It is clear that a full anonymity adversary is a weaker form of a full attribute
unlinkability adversary and we prove that full attribute unlinkability implies full
anonymity (Appendix B) in an ABC system but the opposite does not hold.
We also show that there is no reduction between full attribute unlinkability and
full protocol unlinkability (Appendix C). Therefore, we only prove the security
against the full attribute unlinkability and the full protocol unlinkability for our
proposed ABC system.

4.3 Construction

In a nutshell, a user credential cred is a SDH-CL signature sig on the MoniPoly
commitment C for his attribute set A. Next, the show proofs of our ABC system
can be seen as proving the validity of sig and C such that:

PK{({«;}) :1 = SDH-CL.Verify(C, sig, pk) A
1 = MoniPoly.VerifyXXX(pk, C, {a; }, W, (4", 1))}

where XXX = {Intersection, Difference}. The commitment verification algorithms
are the main ingredient that form the access policy for our ABC system. We

21

describe the proposed ABC system as follows:

KeyGen(1%): Construct three cyclic groups G, Gy, Gy of order p based on an
elliptic curve whose bilinear pairing is e : G; X Go — Gp. Select random gener-
ators a,b,c € Gy, g2 € Go and two secret values z, 2’ € Z,. Compute the values
a = aq = a",..ap = a" X =65, X0 = g2, X1 = 65, Xo = g5
to output the public key pk = (e,G1,G2, Gr,p,b, ¢, {a;, Xi}o<i<n, X) and the
secret key sk = (z,2’).

m

(Obtain(pk, A), Issue(pk, sk)): User interacts with verifier as follows to generate
a user credential cred on an attribute set A = {mq,...,mp_1}.

1. User chooses a random opening value o € Zj to compute C = [[}_, a;nj =

Commit(pk, A, 0). Subsequently, user selects random s; € Zy, to initialize the
issuing protocol by completing the protocol with the issuer:

PK{(%"'wanaff) ‘M = Ha;*jb"}
j=0

where o = s1 and {ag,...,a,} = {mg,...,m,}.
2. Issuer proceeds to the next step if the protocol is verified. Else, issuer outputs

L and stops.
3. Tssuer generates the SDH-CL signature for M as sig = (t, so,v = (Mb%2¢c)Y/(@+1),
4. If sig is not a valid signature on A U {o}, user outputs L and stops. Else,

user outputs the credential as cred = (¢, s,v, A = AU {o}) where:

0wy \ /(@)
8§ =81+ 89,0 = (agh:l(* J)bsc>

as required.

4.3.1 Proof of Possession. This protocol proves the ownership of a valid
credential cred and the well-formedness of the committed attribute set A =
{m1,...,my,} without disclosing any attribute. The Prove and Verify algorithms
interact as follows.

(Prove(pk, cred, L), Verify(pk, 1)):

1. Verifier requests for a proof of possessions protocol by sending an empty
access policy ¢ = L.

2. Prover chooses random 7,y € Z, to randomize the credential as cred = (t' =

2 1)'

2 —
ty,s’ = sr¥ v =07 Y

22

3.

4.

Setting v/, W = H.;& a;-vj as the public input where {W}o<j<n—1 = 7 X

MPEncode(A — {0}5, prover runs the zero-knowledge protocol with issuer:
PK{(,/)7 7,7, o, a1, 0) :e(CPb7cPv' ™7 Xo) = e(v'7, X) A
€(C?. Xo) = e(W. X" X5) |

where p =%, 7 =t',v =y, {a;} = 7 x MPEncode({0}),0 = s'. The protocol
above can be compressed as:

PK{(,O7 7,7, a0, 01,0) : e(W, X{1 X§0)e (b7c”0' ™7, X)) = e(v’V,X)}

to realize a more efficient proof.
Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.3.2 Show Proofs. A show proof proves the relation between the attribute
set A in cred and the queried set A’ chosen by the verifier. Using the same com-
pression technique in the proof of possession, we describe the single clause show
proofs by the following presentation protocols.

AND proof. This protocol allows prover to disclose an attribute set A’ =
{mi,...,mi} C A upon the request from verifier, and proves that his credential
cred contains A’. The showing protocol for AND proof is as follows.

(Prove(pk, cred, panp(ary), Verify(pk, danp(ary)):

1.
2.
3.

5.

Verifier requests an AND proof for the attribute set A" = {mq,...,my}.
If A’ & A, prover aborts and verifier outputs 0.
Else, prover chooses random r, y € Z;, to randomize the credential as cred =

(t' =ty,s' =srv) = 0™, {W)}o<j<n—r = r x MPEncode(A — A’)).

Setting v/, W = H;.:éc a;-vj as the public input, prover runs the zero-knowledge
protocol below with issuer:

k
PK{(p, T,7,0) e | W, HX;nj e(b7c'"7, Xo) = e(v"’,X)}

j=0

where H?:o X;“j and {m;} = MPEncode(A’) are computed by the verifier
and p=r,7r=t,y=y,0 =245
Verifier outputs 1 if the protocol is verified and 0 otherwise.

ANY and OR proofs. This is the show proof for the threshold statement and it
is an OR proof when the threshold is equal to one. Consider the scenario where
the prover is given an attribute set A’ = {myq,...,my} and he needs to prove that

23

he has [attributes {m;}1<j<; € (A’ N A) without the verifier knowing which at-
tributes he is proving. The showing protocol for the ANY statement is as follows.

(Prove(pk, cred, dany (i, a1), Verify(pk, danv(i,41))):

1. Verifier requests an ANY (I, A”) proof for the attribute set A’ = {mq,...,my}.

2. Prover randomly selects l-attribute intersection set I C (A’ N A). If no such
I can be formed, prover aborts and verifier outputs 0.

3. Else, prover chooses random r,y € Zy to randomize the credential as cred’ =
(t' =ty,s' =sr2 v/ =v"Y ", {W’}o<j<n—1 =7 x MPEncode(A —I)).

’ rt

4. Setting v/, W = H;L;(l) a;-vj, W' = (Hf;é a;n"’”') as the public input where
{m2,; }o<j<k—1 = MPEncode(A’—1I), prover runs the zero-knowledge protocol
below with issuer:

PK{(paTa/%LOa"le?a-):

l k
e\ WwWITX7) e| [Ty ™ 07e" ™ Xo :e(v’*,X>}
j=0 j=0

where H?:o a; "7 and {my ;}o<j<r = MPEncode(A’) are computed by the
verifier and p = 1%, 7 = t/,y =y, {¢j}o<j<i = r X MPEncode(I),0 = 5.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NAND and NOT proofs. This is the showing protocol for the NAND statement
which allows a prover to show that an attribute set A’ = {my,...,m;} is disjoint
with the set A in his credential. Note that is a NOT proof when |A’| = 1. The
showing protocol on the NAND statement is as below.

(Prove(pk, cred, dnanp(ary), Verify (pk, dnanp(ary)):

1. Verifier request a NAND proof for the attribute set A’ = {mq,..., my}.
2. If |A" — A| < k, prover aborts and verifier outputs 0.
3. Else, prover chooses random r,y € Zy to randomize the credential as cred’ =

(t' =ty s = sr,v/ =0 {wi; =rwijbocjcn—r {Wh; = W2 j}o<j<k—1)
where ({wi ;}o<j<n—ks {W2/7j}03j§k,1) = MPEncode(A4)/MPEncode(A’).
n—k W

4. Setting v', Wy = [[;Z5 a;"7, W2 = Hj:ol ay“ as the public input, prover

runs the zero-knowledge protocol with issuer:

PK{(p,T,'y,J) W1 #£ Gy AWy #£ GiA
k
€ Wl, H ijj (5] (ngocpvliT,Xo) = E(UW,X)}
j=0

where H?:o X;-nj and {m;} = MPEncode(A’) are computed by the verifier
and p=r,7=t',y=y,0=¢5".

24

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NANY proof. This is the showing protocol for the negated threshold state-
ment. Consider the scenario where the prover is given an attribute set A’ =
{m1,...,my} and he needs to prove that a l-attribute set D C (A’ — A) are
not in the credential without the verifier knowing which attributes he is proving.
The showing protocol on the NANY statement is as below.

(Prove(pk, cred, onany (i,47)), Verify (pk, dnany z,41))):

1. Verifier request a NANY proof for the attributes A" = {m,..., my}.

2. Prover randomly selects [-attribute difference set D € (A’ — A). If no such
D can be formed, prover aborts and verifier outputs 0.

3. Else, prover chooses random r,y € Zy to randomize the credential as cred’ =

2 —1

(' =ty,s = s> v ="V {W] ; = 1W1 jocjcn— {Wh ; = W2 i o< j<T-1)
where ({Wl,j}ogjgnfl? {WQ’J-}OSJ-SZ;I) = MPEncode(A)/MPEncode(D).

—1

4. Setting o', W, = H"_l_awll’j W —Hl—_1 A W = Hk_l_am’j " as the
: EVL WL =1lj=0 "> W2 =1lj=0% W = (1lj=09;
public input where {mg ;}o<;<r—1 = MPEncode(A’ — D), prover runs the

zero-knowledge protocol with issuer:

PK{(p,T7’y,(So,...,(5[,O’)ZW1 # G1 AWy # GiA

U k
e|Wwi] Xjﬂ e [[a;™ Wab7crv'™, X, | = e(w,X)}
j=0 =0
where H?:o aj_ml‘j and {m1 ;}o<j<r = MPEncode(A’) are computed by the
verifier and p = 72,7 =t',y = y,{0;}o<;<i = 7 X MPEncode(D),0 = s'.
5. Verifier outputs 1 if the protocol is veritied and 0 otherwise.

4.4 Security Analysis

4.4.1 Impersonation Resilience. We establish the security of the MoniPoly
ABC system by constructing a reduction to the (co-)SDH problem. In order to
achieve tight security reduction, we make use of Multi-Instance Reset Lemma [39]
as the knowledge extractor which requires the adversary A to run N parallel in-
stances of impersonation under active and concurrent attacks. The challenger
C can fulfill this requirement by simulating the N — 1 instances from its given
SDH instance which is random self-reducible [12]. Since this is obvious, we de-
scribe only the simulation for a single instance of impersonation under active
and concurrent attacks in the security proofs.

Theorem 4. If an adversary A (timp,Eimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tcosdhs Ecosdn) -breaks the co-SDH problem such that:

Ecosdh o Eimp

K
tcosdh 7’Jimp

25

or an algorithm C which (tsan, €sdn)-breaks the SDH problem such that:

— - 14+ (g—1)/p72
5imp§ N\/Esdh_1+ (q p)/p +1,

timp < tsdh/2N - T(q2)~

where N is the total adversary instance, ¢ = Qo) + Q(p,v) s the total query
made to the Obtain and Verify oracles, while T(q?) is the time parameterized by
q to setup the simulation environment and to extract the SDH solution. Consid-
ering only the dominant time elements timp and tsgh, we have:

2
14 (g — D)l/pr=2\ N
(1—(1—Eimp+ - DYp >) < Esdhy 2Ntimp A tsdh-

p

Let N = (&imp — M)_l, we get eggn > (1—e™1)2 > 1/3 and the success
ratio is:
Esdh 1
tsah 3 2Ntimp
Gesah €imp 1+ (g —1)!/p?~?
Tsdh timp timpD .

Y

To modularize the proof for Theorem 4, we categorize the way an adversary
impersonates in Table 3. This is similar to the approach in the tight reduction
proof for the SDH-CL signature scheme proposed by Schige [49]. Subsequently,
we differentiate A into A = {Apind, A1, A2, A3} corresponding to four differ-
ent simulation strategies by C. We omit the proof for the binding property of
MoniPoly commitment scheme Ap;,q which has been described in Theorem 3
and can be trivially applied here.

In each of the simulation strategy, we consider only the success probability
of breaking the SDH problem which is weaker than the DLOG problem such
that esgh > Ediog- Let M* = H?Zl(as’ +m}) and M; = H?Zl(x’ + m; ;) where
A* = {mj} and A; = {m;}, respectively, the DLOG problem can be solved
whenever the forgery v* produced by A equals to a v; which has been generated
by C such that:

U*

(ad” bs*c)ﬁ

(aé\/l*+s*6+v)—m+1ﬁ

Vi
(a}"b*)7

(aéwi-ﬁ-siﬁ-f—’Y)ﬁti

M 4Bty _ Mitsifty
T+ t* o T+t

mod p

which leads to:
t*M; —t;M™* + ﬁ(t*Si — tiS*) + ’y(t* — ti)

x mod p

26

Table 3: Types of impersonation and the corresponding assumptions.

Type A MPEncode(A) s ¢ v Adversary Assumption Lemmas

0 0 1 ¥EE Aping co-SDH Theorem 3
1 0 0 000 A SDH 1
2 0 0 001 Al DLOG 1
3 0 0 010 As SDH 2
4 0 0 011 Aa DLOG 2
5 0 0 100 Al SDH 1
6 0 0 101 A DLOG 1
7 0 0 110 As SDH 3
8§ 0 0 111 As DLOG 3
9 1 1 000 Ay SDH 1
10 1 1 001 Aq DLOG 1
11 1 1 010 Az SDH 2
12 1 1 011 As DLOG 2
13 1 1 100 A SDH 1
14 1 1 101 A N/A 1
15 1 1 110 As SDH 3
16 1 1 111 As N/A 3
Note: * =1 or 0, 1 = equal, 0 = unequal, N/A = not available

where C can solve the SDH problem using x. Following the equation, the Type 14
impersonation (A*,v*,s*) = (A;, v;,s;) will not happen as it causes a division
by zero. On the other hand, Type 16 represents the impersonation using the
uncorrupted cred generated by C when it answers A’s IssueTranscript queries
or Verify queries. If A’s view is independent of C’s choice of (¢;,s;), we have
(t*,s*) # (t;, s;) with probability 1 —1/p. This causes Type 16 impersonation to
happen with a negligible probability of 1/p at which point our simulation fails.

We present Lemma 1, 2 and 3 corresponding to the adversaries A;, As and
As as follows.

Lemma 1. If an adversary A;i (timp, €imp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, Esdn) -solves the SDH problem such that:

——— 1+ (q—1)!/p72
€imp§ N\/f‘:sdh_l"‘ (q p)/p +]-7

timp < tsan/2N — T(q?).

where N is the total of adversary instances, ¢ = Q(o,1) + Q(p,v) is the number
of queries made to the Obtain and Verify oracles, while T(q?) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a ¢-SDH instance (gl,g{‘,g’f7 e 7gi”q,gg7g§”) where ¢ = Qo,1) +
Q(p,v) is the maximum number of queries A; can issue to the Obtain and Verify

27

oracles, we show that if A; exists, there exists an algorithm C which can output
1

(977", t) by acting as the simulator for the ABC system as follows:

Gamey. This is the attack by A on the real N instances of anonymous credential
system. Let S be the event of a successful impersonation, by assumption, we have:

Pr[So] = Eimp- (1)

Game;. In order to simulate the environment of the ABC system, C uniformly
and randomly selects distinct to, tg, ¢y, ', t1, .. ., tq € Zy. Next, let f(x) denotes
the polynomial f(z) = [[f_,(z +tx) = Yi_, prz" and fi(z) denotes the poly-
nomial f;(z) = HZZLk#(x +ity) = Z;é Apz®. Let g{(x) _ szo(g%k)pk, C

t ’ m t!
sends (eaG17G27GT7paa0 = g{(ﬂf)o’al = (IS yeeeyQp = Gg 7b = g{(x)o’c =

g{(m)tg,X =93, Xo=¢2,X1 = Xa”/, X, = Xg“'m) as the public key to A;. C
also creates two empty lists Lo 1) and L(py) where the former stores the cor-
rupted credentials simulated during the issuing protocol while the latter stores
the non-corrupted credentials simulated during the presentation protocol. Since
to, tg, ty, " are uniformly random, the distribution of the simulated public key
(and the corresponding random self-reducible [12] N — 1 instances) is the same
as that of the original scheme. So, we have:

Pr[S1] = Pr[So]. 2)

Game,. In this game, A; plays the role of multiple users to concurrently in-
teract with the issuer simulated by C. Without loss of generality, we assume
every user i uses different attribute set A;. If the i-th session of an issuing
protocol ends successfully, C produces a credential cred; for A;’s chosen A; =
{m14,...,Mn_14,0;}. Their interaction is as follows:

1. A; concurrently initializes the issuing protocol with C by running the zero-
knowledge protocol:

PK{(CU()’“.. .,Oén’“Ui) : Ml‘ = Ha?'i'ibai}

Jj=0

Without loss of generality, we assume A; always execute this protocol hon-
estly. Therefore, C always reset successfully and can extract the secret expo-
nents {a;;} = MPEncode(4;),0; = s1,; used by A; in the protocol.

2. C chooses a random value sy ; € Z; and sets:

[T (&' +my) s, (L
v; = (ay’" %)
f_q (@' +mj)
— ztt; Si .,
=a, b*c;

n
_ mji381,i+82,4
= [[afi0; Ci
j=0

28

where a;; = g{i(ﬁ)tw " b = 91i(x)t°7 ci = g{i(z)to Jf(mois . My sty 8i,05) €

Lpyv), C removes it from Lpy) and adds to Lo). C returns sig; =
(t;, $2,i,v;) as the SDL-CL signature on M; to Aj.

Since C’s choices of ¢;,s; 2 are independent of A’s view, a collision v; = v; for
some 4,7 < q in A’s concurrent queries happens with a negligible probability
of Pr[Col] = 1/p in which A; can compute the discrete logarithm z. Else, C
simulates the Issue oracle perfectly for every concurrent query and .A; can for-
mulate its credential cred; = (t;, s; = $1,; + S2.i, Vi, A;) as in the original issuing
protocol. This gives:

PI‘[SQ] = PI‘[Sl] + PT[COZ]

< Pr[S] + 1:[i/p

i=1
< PrfSi] + (¢ — DY/p7 " (3)

Games. In this game, A; plays the role of multiple provers to concurrently inter-
act with the verifier simulated by C. Without loss of generality, we assume every
prover 4 uses a valid cred; to run its show proof on @smt, such that ¢eme, (A;) = 1.
C always simulates the Verify oracle correctly and this gives:

Game,. In this game, 4; plays the role of verifier to concurrently interact with
multiple provers simulated by C. When A; asks for a show proof on ¢stmt;, C
interacts with A; using a cred; such that s, (4;) = 1. We assume C already
has the appropriate credentials on his hand for these queries. Else, C simulates
(Mo,iy- .., My, ti, 54,v;) as in Gamey and adds it to L(p,y) before interacting
with A;. This gives:

Pr[Sy] = Pr[S3). (5)

Games;. In this game, A; wants to impersonate the prover whose attribute

set is A* = {m},...,m;} # A;i € Lo,5) using the access policy ¢%,, such
that ¢%.(A*) = 1 and ¢%.(A;) = 0. A; is still allowed to query the oracles

as in Game;, Games and Game, but with the restriction ¢%,.(A4;) # 1 for
A; to the Obtain oracle. Finally, if A; completes a show proof for A* such that
(ADTVe(pk, -, e (A¥)), CVE (pk, % (A¥))) = 1, C resets A to the time where
it has just sent the witnesses. If the show proof verified again, C can obtain
two valid transcripts and recover the secret exponents to extract the credential

elements (t*, s*,v*).

29

Since A; must output t* ¢ {t1,...,1,},ifv* ¢ Lo, r)\UL(p,v), C can construct
a polynomial ¢(x) of degree n — 1 such that f(x) = ¢(x)(z + t*) + d to compute:

(to XF_gmia'l 415 +t() f (=) o)
o1/ (00 5, m;x’-wtgs*ﬂg)dgf% —y (to Sig mi /T +tgs o) (rer)d d
1 =0
c(@)(@+t*)+d _ c(a)
=g d(zft%) d
=9
_1
_T+tr
=9

and output (gﬁ,t*) as the solution for the SDH instance. On the other hand,
if we have v* € Lo 1)U L(p,y), C can extract the discrete logarithm x to break
the SDH assumption.

Let Pr[Acc] be the probability of C outputs 1 in the presentation protocol with
Aj, and Pr[Res] be the probability of C resets successfully, by Multi-Instance
Reset Lemma, [39], we have:

Pr[S;5] < Pr[S4] + Pr[Acc]

< Pr[S4] + 3/Pr[Res]—1+1/p+1
< PrlSy + /Vesan —1+1/p+1 (6)

and summing up the probability from (1) to (6), we have gjmp < X/y/Esah — 1 +
1/p+ 1+ (q—1)!/p?~! as required. The time taken by C is at least 2Nt;m, due
to reset and interacting with N parallel impersonation instances, besides the
environment setup and the final SDH solution extraction that cost T(¢?). O

Lemma 2. If an adversary As (timp,€imp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, Esdn)-solves the SDH problem such that:

/ 1 —1)!/p1=2
€imp§ 1 \/5sdh_]-+ +(q p)/p +]-7

timp S tsdh/2N - T(q2)

where N is the total of adversary instances, ¢ = Q(o,1) + Q(p,v) is the number
of queries made to the Obtain and Verify oracles, while T(q?) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a ¢-SDH instance (gl,gf,gf2, s 9% g2, 9%) where ¢ = Qo.n +
Q(p,v) is the maximum number of queries A can issue to the Obtain and Verify

1
oracles, there exists an algorithm C which can output (g;**,¢) by acting as the

simulator for the ABC system as follows:

Gameg. This is the same as the Gameg in Lemma 1 where we have:

Pr[So] = Eimp- (7

30

Game;. This is the same as the Game; in Lemma 1 except that C additionally
checks whether X = g% for i € {1,...,q}. If such t; is found, C outputs the so-
lution of the SDH instance using the discrete logarithm = = ¢;. C also computes
fig(@) = Tlicy ppi (@ + th) = S92 42% and uniformly selects random dis-

tinct s1,...,8, € Zj. C sends (e,Gy,Gz,Gr,p, a0 = g{(w)to,al = ag/,...,an =

az/"’b — glf(x)to_ZJ:l fj(x),c g{(x)to +Zj=1 sjfj(x),X — 9§,X0 — 92,X1 —
X&', ..., X, =X§") as the public key to Ay. This gives:

PI‘[Sl] S PI‘[S()] (8)

Game,. This is the same as the Games in Lemma 1 except that, after resetting

As, C simulates the SDH-CL signature sig; = (¢;, s;, v;) on M; = a,

for Az = {mu, sy, Mp—14, Oi} such that:
v; = (aol_lyzl(a:’+mj,i)bsl,i-l,—(si—slﬁi)c)l/(x-fti)
(F@to T (s s (F@)t S fi (@) f@ sty s hi @\ O
=19 g1 91

_ | F@) o T oy (@' +mya)+satotts) 380 i (s5—s:) f5(2)+(si—s:) fil) 1/ (ets)
=% 91

_ gfi(ﬂi)(to [T (@ +my) +sito+tg)+307 1 52 (s5—s0)f54(@)
=0

and sg; = s; — 51, When the protocol ends, A2 can compile the credential as
cred; = (t;,8; = $1,; + S2,i,v;, A;). As C simulates the Issue oracle perfectly, we
have:

Pr[Sy] < Pr{Sy] + (g — 11)/p* . (9)

Games. This is the same as the Games in Lemma 1 and we have:
Pr[S3] = Pr[Ss]. (10)

Gamey. This is the same as the Game, in Lemma 1 and we have:
Pr[Sy] = Pr[Ss]. (11)

Games. Similar to the Games in Lemma 1, C can reset As to extract the
elements (t*, s*,v*) of cred* where v* has the form:

/(@+ts)

o (gf(af)(to Hg;l<z’+mj,i>+s*ta+ts’)+231,j¢i(sj—s*)f,-(x>+<si—s*>fi<x>) !
1

Since Ap must output t* = t; € {t1,...,t,} but s* # s; € {s1,...,54} for
an i € {1,...,q}, C proceeds to compute c(x) of degree ¢ — 2 and d € Z; from
the knowledge of {¢1,...,t,} such that f;i(x) = c(z)(z + ¢;) + d. Moreover, it

31

(' 40:) [T}Z) (&' +my.i

)b911

will be the case v ¢ Lo,1y U L(p,vy or C already found = = t; during Game;.
Subsequently, C calculates:

1
(U*/Q{i(m)(to Siomjz” +S*t6+t6,)+zgl,j;éi(5j5*)fj,i(m)+c(m)(si5*)) doi=e™)
(fi(@m)—c(@)(@+t3)) (s —s*)
_ Ti—s)@+t
=01
1

rE=>
=0 °

1
and outputs (g; """ ,¢;) as the solution for the SDH instance. Therefore, we have:

Pr[Ss] < Pr[S4] 4+ {/vEsah —1+1/p+1 (12)

and summing up the probability from (8) to (12), we have eimp < X/\/Esah — 1+
1/p+ 1+ (q—1)!/p?~! as required. The time taken by C is at least 2Nt;m, due
to reset and interacting with N parallel impersonation instances, besides the
environment setup and the final SDH solution extraction that cost T'(¢?).

O

Lemma 3. If an adversary As (timp,€imp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, Esdn) -solves the SDH problem such that:

——— (g 1)l/pi2
Eimp < B \/Esdh_1+(q;/p+17

timp S tsdh/zN - T<q2)-

where N is the total of adversary instances, ¢ = Qo,1) + Q(p,v) is the number
of queries made to the Obtain and Verify oracles, while T(q?) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a ¢-SDH instance (gl,gf,gfg, s 9% g2, 9%) where ¢ = Qo.n +

Q(p,v) is the maximum number of queries A3 can make to the Obtain and Verify
1
oracles, there exists an algorithm C which can output (g;**,¢) by acting as the

simulator for the ABC system as follows:
Gameg. This is the same as the Gameg in Lemma 1 and we have:
Pr[So] = €imp- (13)

Game;. The precomputations and checking are the same as the Game; in
f(@)to=329_1 fi(z)

Lemma 2 but (E,G17G2,GT,p, apg = g1 , A1 = @5/7- sy n = agmvb =
2 S f LS ,
g{(i)to 25-1 fJ(I)’C _ g{(i)t0+23:12JfJ(»L)7X _ g%”,Xo _ QQ,Xl _ XS” X, =

32

Xg’”) as the public key to Az where the random z1,..., 2, € Z; are uniformly
distributed. This gives:

Pr[S1] < Pr[So). (14)

Game,. This is the same as the Games in Lemma 1 except that, after resetting
(@' +0:) [Tj=1 (&' +my,0)

As, C simulates the SDH-CL signature sig; = (¢;, s;, v;) on M; = a b1
for Aj ={m,...,Mp_1,,0;} by letting s; = z; — Z?:o mj,ix’j where:
v; = (a(lj_lyzl(a:/erj’i)b$1,12+(371_Sl,i)c)l/(l“‘rti)
@ t- S B @S mia) (@), f@)s f@ Az i) T
=\9% 91 91

(gf(ﬂﬂ)(to S0 myia ity btz Sy f (@) 40, 2 fm)) AL
1

1/(z+t;)

F(@)(to Xfg mysa’d +sitoty) 394 i (zi—2i) fi(@)+(zi—zi) fi ()
91 91

o gfi(w)(to Siomyia tsitg g)+ (=) fii(®)

=0
and sg; = s; — s1;. When the protocol ends, As compiles the credential as
cred; = (t;,8; = $1,, + S2,i,v;, A;). As C simulates the Issue oracle perfectly, we
have:

Pr[Sy] < Pr{Sy] + (g — 1)!/p* . (15)

Games. This is the same as the Games in Lemma 1 and we have:
Pr[S3] = Pr[Ss]. (16)

Gamey. This is the same as the Game, in Lemma 1 and we have:
Pr[S4] = Pr[Ss). (17)

Game;. By definition, A3 must output t* = ¢; € {t1,...,t,} and s* = s; €
{s1,...,84} forai € {1,...,q}. Note that it must be the case v* ¢ Lo nUL(pv)
or x = t; has been found during Game;. In the unlikely case of Type 16 forgery
(A*,s*,t*,v*) € L(p,vy which happens with probability 1/p, C aborts. Similar
to the Games in Lemma 1, C can reset Asj to extract the elements (¢*, s*,v*) of
cred*. C proceeds to compute c(x) of degree ¢—2 and d € Zj, from the knowledge
of {t1,...,t;} such that fi(z) = c(x)(x +t;) + d. Subsequently, C calculates:

n *, 15 * 4/ 77 q * * d(zi_Z*)
(U* /g{m(to S mia s)+ (2= fy () +(zi—2 >c<z>>

i@ —c(@) (@+ty)) (2 —2%)
_ (@¥t)d(z,—2%)
=01

_1
xT+t;

=01

33

_1
and outputs (g; ;) as the solution for the SDH instance. Therefore, we have:

Pr[Ss] < Pr[S4] 4+ {/vEsan —1+1 (18)

and summing up the probability from (13) to (18), we have gimp < X/ \/Esah — 1+
1+ (g—1)!/p?~! as required. The time taken by C is at least 2Nt;m, due to reset
and interacting with N parallel impersonation instances, besides the environ-
ment setup and the final SDH solution extraction which cost T'(¢?). ad

Combining Theorem 3, Lemmas 1, 2 and 3 gives Theorem 4 as required.

4.4.2 Unlinkability. Next, we prove the unlinkability of the proposed ABC
system. It is sufficient to show that the witnesses, the committed attributes
and the randomized credential in the issuing protocol and presentation protocol,
respectively, are perfectly hiding. Then, we demonstrate that every instance
of the protocols is uniformly distributed due to the random self-reducibility
property. This implies that even when A is given access to the Obtain, Issue,
Prove, Verify and Corrupt oracles, it does not has advantage in guessing the
challenged attribute sets.

Lemma 4. The committed attributes and the corresponding witness in the issu-
ing protocol of the ABC system are perfectly hiding.

Proof. By Theorem 2, the MoniPoly commitment C' = H?:o a”’ in the issuing
protocol is perfectly hiding. Subsequently, the value M = Cb*! is a Pedersen
commitment which is also perfectly hiding. The same reasoning applies on the
witness R = [[7_, a;-"j b** which has the same structure as that of M. 0

Lemma 5. The initialization of the issuing protocol in the ABC system has
random self-reducibility.

Proof. Let Gen = KeyGen, P = user, V = issuer, pk = M and sk = ({m,}, s1),
we define the algorithms Rerand, Derand and Tran as follows:

— Rerand(M) randomly selects p € Z; and outputs M’ = M? where M =
H?:o a;.nj b°1 is the commitment on attributes generated by wuser. For all
(M,{mj},s1), (M',{m’},s}) has the same uniform distribution as another
(M",{m’},s{) which would have been generated by user.

— Derand (11, M’, ({m' }, 1), p) outputs ({m; }, s1) = ({m’ /p}, s1/p) for all (M,) €
Rerand(M).

~ Tean(M, M', p, (R, ¢/, (i}, 3)) outputs (R = RYe, {f;} = {it/p}, 1 =
sy /p for all (M’,p) € Rerand(M). The transcript (R,e’,{m;},3;) is valid
with respect to M if (R’, ¢, {m’}, 31) is valid with respect to M’.

O

Lemma 6. The randomized credential in the presentation protocol of the ABC
system are perfectly hiding.

34

Proof. Given a user’s randomized credential v’ = v™" " in the show proof, there
are |Zy| — 1 possible pairs of (r’,y") # (r,y) which can result in the same v'.
Besides, for each r, there is a unique y such that:

dlog, (v") = dlog,, (v)ry -1

dlogaO (v)
dlogao (v’)

Since r, y are chosen independently from each other and of the credential element
v, the latter is pegfecltly hidden. The same reasoning applies on the randomized
credential v’ =v"Y . 0

Lemma 7. The presentation protocol in the ABC system has random self-reducibility.

Proof. Let Gen = KeyGen, P = prover, V. = verifier, pk = (v/,W) and sk =
(t,s,v,0,7,y), we define the algorithms Rerand, Derand and Tran for the proof
of possession as follows:
— Rerand(v', W) randomly selects p1, p2 € Z and outputs (v" = v/ W=
W) where (v/ = o™V W = H?il a;’) are the randomized public inputs
generated by prover. For all ((v/, W), (¢, s,v,0,7,y)),

((vﬂv Wl)? (t, = tp?? S, = Sp%7vlvol = 0p1, T/ = Tplvy/ = yp2))

has the same uniform distribution as another ((v"", W"), (t", s"”,v", 0", 7", y"))
which would have been generated by prover.
— Derand((v', W), (v"",W"), (t',s',v",0',7",y), (p1, p2)) outputs

s B (N
(ta $,V,0,T, y) = (77 ig) U/pl 2p27 iv L7 yf
P2 P1 P1L pPL P2
for all ((v"”,W"), (p1,p2)) € Rerand(v').
= Tran((v', W), (v"", W"), (p1, p2), W', V', Y" €', {m’}, 8,7, 9, 1')) outputs

—2 _2 m’, g o . tA’
<V: v 92’Y:Y/p1 aelv{rﬁj} = {7]}’3 = i27TA: 7257): yivt: >
P1 P1 1
for all ((v", W’), (p1, p2)) € Rerand(v', W). The transcript (V,Y, ¢/, {m;}, 3,7, 3, %)
is valid with respect to (v', W) if (V',Y", e’ {m}}, 8,7, ¢',t') is valid with
respect to (v, W').

The show proofs can be shown to have random self-reducibility in the similar

way. O

Theorem 5. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as the randomized credential are perfectly hiding, the ABC system is
aunl-aca-secure.

35

Proof. We show that an adversary .4 can win the aunl-aca-security game only
with a negligible advantage €,,n, with respect to the ABC system simulator C.

Gameg. This is an attack on the original ABC system. Let Sy denotes a suc-
cessful distinguishing attempt, by definition we have:

1
Pr[So] < auni + 3 (19)

Game;. C generates (pk, sk) as in the original algorithm and forwards to A so
that the latter can play the role of user and issuer. In addition, C maintains
two list L(o,1), L(p,v) for corrupted issuing protocol and presentation protocol,
respectively. Since C does not alter the key generation algorithm, this gives:

PI‘[Sl] = PI‘[S()] (20)

Game,. When A acts as the issuer to concurrently interact with multiple users,
C simulates Obtain oracle to produce a credential cred; for the user in the i-th
session. Without lost of generality, we assume every user uses different attribute
set A; = {ma,i,...,Mp_1,,0;}. Their interaction is as follows:

1. C initiates the issuing protocol for user in the i-th session of the concurrent
interactions by running the zero-knowledge protocol:

PK{(O(QJ, A ,Oénﬂ;,O'i) M; = H a?j’ib”i}.

=0

2. A returns sig; = (i, 8;,2,v;) to C as the SDH-CL signature on M;.
3. C generates its credential cred; = (¢;,s;,v;, A;) as in the original algorithm
and adds (C?”@di, 51,0, 81, Mo is .-, I’?’lnﬂ') to L(O,I)-

This interaction is the same as in the original issuing protocol from the view
of A. Furthermore, from Lemma 4, it is clear that every M; and its witness
corresponding to A; have perfect hiding and each protocol session is uniformly
distributed by Lemma 5. The arguments also apply on the case where A con-
currently runs the issuing protocol on the same attribute set. We ignore the
case where A acts as a user in the issuing protocol as it does not gain more
information than acting as an issuer. This gives:

PT[SQ] = PT[Sl] (21)

Games. Compared to the previous games, A additionally queries the issuing
protocol transcript of the i-th session to the Corrupt oracle. C searches in Lo r)
to return the internal state and the random exponents used in completing the
protocol. By Lemma 5, for any two witness sets:

(81,1',1, mo1y---, mn,i,l)a (81,1‘,27 mos,2,--., mn,i,z)

36

in the issuing protocol returned by Corrupt, the distribution of their transcripts
are identical to each other from the view of A. Following Lemma 4, this is true
even for the non-uniformly distributed attributes mg,...,m,_1,; which have
been hidden by o; and s; ;. Since 4 does not gain any advantage, we have:

Pr[S5] = Pr[S,). (22)

Game,. Now A also acts as the verifier to concurrently interact with C as
the provers for multiple credentials. C runs the i-th session of show proof for
cred; = (ti,8i,vi, Ai = {Mm14,...,Mn_1,,0;}). Without loss of generality, we
assume A always requests for successful show proofs where ¢simi(A;) = 1. The
interaction is the same as in the original show proof from the view of A. Moreover,
from Lemma 6, it is clear that every v} and its witnesses corresponding to v, have
perfect hiding and each protocol session is uniformly distributed by Lemma 7.
The arguments also hold for the case where A concurrently runs the presentation
protocol on the same credential. This gives:

PI‘[S4] = PI‘[Sg] (23)

Games;. In contrast to the previous games, A also queries the presentation pro-
tocol transcript of the i-th session to the Corrupt oracle. C searches in Lpy to
return the internal state and the random exponents used in completing the pro-
tocol. The presentation protocol is an extension to the initialization in the issuing
protocol where C additionally proves the knowledge of the blinding factors used
to randomize the credential. Specifically, C proves the validity of the random-
ized credential element v} in a witness-hiding protocol, such that it consists of
the corresponding randomized attributes (mp ;, ..., m7, ;), the blinded credential
elements (¢, s;) and the blinding factors (r;,y;). Therefore, following Lemma 7,
for any two witness sets in a presentation protocol returned by Corrupt, the dis-
tribution of their transcripts are identical from the view of A. Following Lemma
6, this is true even if A knows (¢;,s2,;,v;) that have been exposed during the
issuing protocol, which now have been perfectly hidden by (r;,y;). A can also
act as a prover in which it does not gain useful information. The same argument
applies on show proofs with access policy of composite clauses and we have:

Pr[S5] = Pr[S4] (24)
where A does not gain any advantage from the query.

Gameg. When A decides two attribute sets Ay and A; as well as the access
policy ¢4 which he wishes to challenge such that ¢%..(Ao) = ¢%m (A1) = 1,
C randomly decides a bit b € {0,1} and play the user role to run the challenge
issuing protocol with A for A, and A;_, respectively. When the issuing protocol
is completed, C obtains two credentials cred, and cred;_;. In the same order,
C uses cred, and cred;_; to complete the challenge show proof with A4 as the
verifier. A can request polynomially many times of show proofs. From time to
time, A still can query the oracles as before with the restriction of querying the

37

challenge transcripts to Corrupt. Finally, if A makes a correct guess b’ = b, it
breaks the full attribute unlinkability of the ABC system with the probability:

PI‘[S@'] = PI‘[S5]
= Pr[t) = 0]
= % + €aunl- (25)

Combining the probability from equation (19) to (25), we have negligible €,yn|
as required and A runs in time ¢,yn- a

Using the similar approach, we show that the security of full protocol unlink-
ability also holds for the proposed ABC system.

Theorem 6. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as randomized credential are perfectly hiding, the ABC system is punl-
aca-secure.

Proof. The proof is the same as that of Theorem 5 except Gameg:

Gameg. When A decides two attribute sets Ay and A; as well as the access
policy ¢k which he wishes to challenge such that ¢%..(4o) = ¢%m (A1) =1,C
randomly decides a bit b; € {0,1} and play the user role to run the challenge is-
suing protocol with A for A,, and A;_y,, respectively. When the issuing protocol
is completed, C obtains two credentials credy, and cred;_y,. C randomly decides
another bit by € {0,1} and uses credp, and cred;_p, to complete the challenge
presentation protocol with A as the verifier. A can request polynomially many
times of show proofs. From time to time, A still can query the oracles as before
with the restriction of querying the challenge transcripts to Corrupt. Finally, if A

makes a correct guess (7o, 1), T(p,v)) such that credr, ,, = credy , ,, it breaks
the full protocol unlinkability of the ABC system with the probability:
PI‘[S(;] = PI‘[S5]
= Prleredy, ,, = credx ;)|
1
= 5 + Epunl- (26)
Therefore, we have negligible epyn as required and A runs in time ¢pyni. a

5 Evaluation

We compare our proposed ABC system to the related ABC systems in the liter-
ature. We consider security properties as well as asymptotic complexity vis-a-vis
of the expressiveness of their show proofs.

38

5.1 Security

We offer a general overview of security properties in comparison with other
schemes here before we show the tightness of our own scheme.

5.1.1 Security Properties in Comparison. We summarize the security
properties of ABC systems in either SDH or alternative paradigms in Table 4.
The table shows that the relevant schemes vary significantly in their fulfilled
security requirements. MoniPoly is the only ABC system that achieves the full
range of security requirements. At the same time, it is proven secure in the

standard model with a tight security reduction.

Table 4: Security properties of related ABC systems.

ABC System Impersonation Anonymity Unlinkability Security Tight
Issuing Possession Issuing Possession I<+P Model Reduction
ASM [4] ° ° ° o o) O RO o)
TAKS [51] ° o) ° O o) O RO o)
AMO [2] ° e ° ® ° O Standard O
CKS [20]] O O O O O Standard O
SNF [50] ° O O O O O Standard O
ZF [52] ° e ° ® ° O Standard O
BNF [7] © O © O O O Standard O
CKLMNP [21] (] O O o { O Standard O
BBDT [6] ° ® ° ® o O Standard O
RVH [47]] O O O J O Standard O
SNBF [48] ° e ° ® e O Standard O
ON [44] © e © ® o O Standard O
CDDH [16] L J O { O O O Standard O
Bemmann et al. [§]] © © O O O RO O
BBDE [11] ° ° ° ® o O Standard O
CG [18, 19]] O O O O O Standard O
CDHK [17] ° o o ° ° O CRS o
FHS [34] ° ° ° ® © O Generic O
This Work () ° [([® Standard [)

Note: @: proof provided, ©: claim provided, O: no claim, I: Issue, P: Possession
O in Issuing: only weak anonymity or unlinkability / trusted issuer / no blind issuing

5.1.2 Tight Security Reduction. The MoniPoly ABC system features a
tight reduction to the ¢-(co-)SDH assumption. Let SR denote the success ratio.
Furthermore, assume the probability of breaking the ¢-(co-)SDH assumption

39

over groups of prime order p is y/q/p [30]. We get:

Eimp o Ecosdh

timp tcosdh
SR(A) = SR(C)

R
p
2_[{ _ 210gn;logp

Next, we approximate T'(¢%) ~ ¢ and gain:

besan _ €mp _ 1+ (g = D!/pT™>

tsdh — limp timpP

1+ (¢ —1)!/p?2
timpp

1 —1)!/p2—2
2_%23\/? +(a—1)!/p

SR(A) < 6SR(C) +

p
Ttlogg—logp 1 q
2 + —_ + =
p p
9K < QW +21—logp+21+10gQ710gp,

27 <2

T+log g—logp log n—log p
2 2

where we obtain 277 > 2 > 2 when logp > 2k + 7 + logg.
Let the total number of attributes supported by the ABC system be n < gq.
Setting the bit length for the order p as logp = 2k + 8 4+ log ¢, we gain a security
level of at least 27%. In Table 5, we illustrate the relation between log p and the
respective security level x as well as the total allowed queries g.

Table 5: Bit length for the group order p at different security levels.
loggk =80k =112 k =128 kK = 256
30 198 262 294 550

40 208 272 304 560
50 218 282 314 570

5.1.3 Curve Recommendations. The setting proposed in Section 5.1.2 ful-
fills the requirement of EC-DLOG assumption in groups G; and Gy which re-
quires that log p > 2k, it remains to examine whether this setting can satisfy the
requirement of DLOG assumption in Gp. The latter requires that the finite field
modulus in G is large enough to resist the special extended tower number field
sieve (SexTNFS) attack [5, 40]. We examine the popular curves recommended by

40

Barbulescu and Duquesne [5] and found that some curves parameters guarantee
the k-bit security in Gr but not G; (and Gz) for our proposed ABC system.
For instance, the most efficient curve in the work, namely, KSS-16 needs a curve
parameter u of length logu = 34 to ensure the 128-bit security in Gp. Such u
results in logp = log % ~ 256, which is only sufficient to guarantee
the 112-bit security at logq = 24 according to Table 5. Considering the overall
security in G1, Gy and G, we suggest the bit length for w at different security
levels in Table 5.

Table 6: Bit length for v and p at different security levels.
K =128 K = 256
BN BLS-12 KSS-16 KSS-18 KSS-32 KSS-36 BLS-42 BLS-48 BLS-54

30 114(462) 77(308) 39(209) 51(297) 49(737) 56(644) 46(552) 35(560) 30(555)
40 114(462) 77(308) 40(304) 53(309) 49(737) 56(644) 47(564) 35(560) 31(573)
50 114(462) 79(316) 42(320) 54(416) 49(737) 56(644) 48(576) 36(576) 31(573)
Note: Cell value is in the format of log u(log p)

log q

The logu = 114 for BN curve results in a group order of length logp =
log 36u* + 36u® + 18u? + 6u + 1 ~ 462 which covers logq < 198 that are more
than sufficient. On the other hand, the logu = 77 for BLS-12 curve results
in logp = logu* — u? + 1 ~ 308 which is just nice to cover logq < 44. If
using BN curve is a must and one is willing to accept x = 118, the parameter
with logu = 95 proposed by Luo and Chen [41] can be considered which has
log p ~ 384 that can cover log ¢ < 120. Using the similar calculation, we list the
appropriate log u and log p for the popular curves at 128-bit and 256-bit in Table
6.

5.2 Expressivity and Computational Complexity

In Table 7, we compare the MoniPoly ABC system to relevant popular ABC
systems with respect to their realized show proofs and asymptotic computa-
tional complexity. Table 7 is normalized in that it considers only the asymptotic
complexity for the most expensive operations (e.g., the scalar multiplication,
modular exponentiation or pairing). Table 8 expands on this view by displaying
the concrete complexity for individual operations. The details of calculating the
complexities can be found in Appendix E.

5.2.1 Expressivity over Unrestricted Attribute Space. The MoniPoly
ABC system is the first scheme which can efficiently support all logical state-
ments in the show proofs regardless of the types of attribute space (cf. Table 7).
That is, MoniPoly operates on arbitrary attributes while offering a wide range
of statements in its expressiveness.

41

Table 7: Asymptotic complexity for show proofs in related ABC systems.

Property ABC System
Attribute Space Sr Ss + S S
Technique Accumulator Trad. Encd. Accumulator Prime Encd. Trad. Encd. Comm. MoniPoly
Setup O(nr) O(2™F) (n) O(n) O(n) O(n) O(n) O(n)
. Prover o) 0(1) o(1) O(ns) O(n) O(n) O(n) O(n)
Issuing Protocol g che O(2V™F) O(nr) O(n) O(ns) O(n) O(n) O(n) O(n)
Possession Prover O(nr) O(L) O(ns) + O(N) O(ns) +0(1) O(n)+0O(1) O(n) O(n) O(n)
Verifier O(nr) O(L) O(ns) + O(N) O(ns)+0O(1) O(n) + O(1) O(n) O(n) o(1)
AND(A") Prover O(kr) O(L) O(ns —ks)+ O(N) O(ns —ks) +O(1) O(ns —ks)+0O(1) O(n—k) O(m—k) O(n—k)
Verifier O(kr) O(L) O(ns) + O(N) O(ns)+0O(1) O(ns) +0O(1) O(n) O(k) O(k)
& OR(A) Prover O(kr) O(L) O(nsks)+O(N) O(nsks)+ O() O(nsks) +O(1) X X O(n+k)
e Verifier O(]CF) O(L) O(TLs/Cs) + O(N) (7Ls]€s)) O(nsk:s) + 0(1) X X O(k)
A~ ANY(L, A") Prover O(kr) O(L) O(ns!)+ O(N) X X X X O(n—1+k)
g ’ Verifier O(kp) O(L) O(ns!) + O(N) X X X X Ok +1)
@ NAND(A') Prover X O(L) X X O(ns — ks) + O(1) X X O(n)
Verifier X O(L) X X O(ns) 4+ 0O(1) X X O(2k)
, Prover X O(L) X X X X X O(n+k)
NOR(A) Verifir x O(L) x x X X x o(k)
_ Prover X O(L) X X X X X O(n+k)
NANY(LA) - Verifier % O(L) x x X X X Ok+2)
Constant Size Proofs v v X v 4 X v v
Flexible Attribute Indexing X X X X X X v v
Schemes 48] |44] [52] 150] [19] [4, 20, 8, 11] [17, 34] This Work

Note: S: attribute space, k = |A'| < n = |A| = ns + np, S: string attributes, F: finite-attributes, L: maximum allowed A in CNF,

N: maximum attributes allowed in a statement, v: realized, X: not realized

Table 8: Computational complexity for relevant ABC systems on proof of pos-
session and AND proof.
S ABC Proof of Possession Complexity AND Proof Complexity

5. SNBF [48]° (54 +3np) My + 66Ms +3Mr + 40P (50 + 3kr) M + 66M; + 3Mr + 40P
F ON [44]"2 (1338 4+ 6L) M + 5Mr + 105P (1334 + 6L) M + 5Mr + 105P
SNF [50]* (67 + 2ng) My + Mr + 10P (67 + 2ns — ks)My + Mz + 10P
Ss + Sr ZF [52]1 (494 2(ns + nrp + N))M; + 11P (49+2(ns + kr + N) — ks)My + 11P

CG [18,19] (7+2ns+2)E (9+2ns — ks)E
ASM [4, 20] (20 + 2n)M; + 2P (20 + 2n — k)M, + 2P
CDHK [17]* (20 + 4n)M; + 70Ms + 2My + 28P (20 4 2n — k)M; + (70 4 k)M + 2Mr + 28P

S FHS [34] (12 +2n)M; + 8P (11 +n — k)M (1) + (k 4+ 1)M2 + 8P
BBBB™ [8, 11] 2nM> + 2P (2n — k)M + 2P
This Work (9 +n)M +4Ms + 3P (9+n—k)M + (k+1)Mz + 3P

Note: 'Type-1 pairing scheme, Zassume batch GS-proof [10] is used, p: group order, n: total attributes,
S: string attributes, F: finite-attributes, L: maximum allowed A in CNF, |- |: element size,

N: maximum attributes allowed in a statement, M,(-): exponentiation in G, P: pairing,

E(+): modular exponentiation in QR

We note that the traditional encoding can achieve the same expressiveness,
in principle, in an unrestricted attribute space S as well as string attribute space
Ss. However, traditional encoding will yield inefficient proofs.

5.2.2 [Expressivity over Finite-Set Attribute Space. Let us consider now
consider the comparison with schemes with only finite-set attribute space Sg.
Most of the accumulator-based ABC systems [50, 48] are restricted to finite-

42

set attributes only. While MoniPoly supports negation statements in terms of
expressivity, their show proofs do not. The restriction to finite-set attributes
and monotone (non-negative) formula affords them a low asymptotic complexity
in show proofs. However, their setup and issuing protocols are prohibitively
expensive with exponential computational and space complexity (O(2"F) [44]
and O(2V"F) [48]), in turn, restricting the number of attributes that can be
feasibly encoded.

The latest ABC system in this line of work [44] proposes a workaround on
negations encoding negated forms of attributes separately. In this scheme, each
of its show proof has O(L) complexity where L is the maximum number of A op-
erators permitted in a composite conjunctive formulae. Moreover, the additional
negated finite-set attributes double the credential size and the already massive
public key size.

5.2.3 Comparison to Commitment-Based Schemes. MoniPoly bears
similarities in terms of computational and communication complexity to other
commitment-based ABC systems [17, 34]. Although MoniPoly does not have
constant asymptotic complexity, the verifier is required to compute only three
pairings for a single-clause show proof. This makes our scheme the most efficient
construction of its kind in this comparison.

At the same time, apart from having constant size AND proof similarly to
the relevant commitment-based schemes [17, 34], MoniPoly has constant size
possession proof as well as NAND proof.

5.2.4 Parametric Complexity Amnalysis. To illustrate the impact of a
range of parameters on ABC system performance, we estimate the asymptotic
computational complexity of the schemes listed in Table 8. We depicted in Fig-
ure 1 the complexity for each ABC system at 128-bit and 256-bit security level.

While schemes especially crafted for a restricted finite-set attribute space are
the fastest schemes in the field, Monipoly is the most efficient ABC system based
on commitment schemes and outperforms most schemes in the field, overall.

If strength in terms of security properties is a prerequisite, our ABC system

outperforms all listed in Table 8 while having efficient constant size show proofs.
As a foundation for this estimation, we have established the relative compu-

tational costs on BLS-12 curves at 128-bit security as well as on BLS-48 curves at

256-bit security in the experimental environment elaborated on in Section 5.3.

We obtained the following relative computation costs in equivalents of scalar

multiplications in Gy:

BLS-12 curve at 128-bit security: for a scalar multiplication in Gs, an ex-
ponentiation in G and a pairing, respectively, is about the same as comput-
ing 2, 6 and 9 scalar multiplications (M7) in G;. The modular exponentiation
of RSA-3072 on the other hand is equivalent to 5Mj.

BLS-48 curve at 256-bit security: the relative costs are elevated to 16M7,
48 M, 49M; and 56 M7, respectively.

43

(a) Proof of possession (128-bit).

10000
7500

5000

#ModExp

2500 # -

#ModExp

3000

2000

(b) AND proof (128-bit).

1000

500
#Attributes n

(c) Proof of possession (256-bit).

90000

1000

20000

(d) AND proof (256-bit).

_uc:jEDUOO _UC:JL
g g
30000
| B - J e
’ T wtesn ’ T iesn
(e) Scheme
ASM -+ ZF -— ON ‘- CDHK BBBB
- SNF —- SNBF - - CG FHS This Work

Fig. 1: Asymptotic complexity of ABC systems (scalar multiplications in Gy)

5.3 Actual Performance

As a proof of concept, we implemented our ABC system using the Apache Mi-
lagro Cryptography Library [33] (AMCL, Java-based, version 3, 64-bit) on i7-
4790S 3.2GHz and 16GB RAM with Windows 10 Enterprise x64. We chose
BLS-12 and BLS-48 curves for the benchmark at 128-bit and 256-bit security

44

We also assume the computational cost in Type-1 pairing friendly curve is equiv-
alent to that of Type-3 and furthermore L =1 and N = 1.

(a) 128-bit Security Level (b) 256-bit Security Level

20,000 [[[[- 50,000 l [[[[| |eIssue
— —_ + Possession
£ G +OR
g 15,000 |- - > 40,000 |- 1+ ANY(9)
& £ AND
£ 10000 | g 30000} - |[aNOR
: 3 «NANY(9)
Z S 20,000 ||« NAND
= 5,000 41 &
& £ 10,000| :
ol _" " | =
I I I I I oL i
200 400 600 800 1,000 |

Il Il Il Il
200 400 600 800 1,000
Number of Attributes

Number of Attributes

Fig. 2: Benchmark of MoniPoly ABC system in 1000 rounds.

level, respectively, as they are in the same curve family and have rather short
log p among all.

AMCL has a default BLS-12 curve that suits our security requirement, namely,
BLS461 which uses 77-bit u. However, the default BLS-48 curve in AMCL uses
31-bit u and does not meet our security requirement. Thus, we customize the
library to use a low hamming weight 35-bit u = 23 + 26 + 225 4 23% which results
in log p = 561, just nice to cover log ¢ < 41. The BLS-48 curve is then set to y? =
23 — 7 with the full group generator as (2,1). We fix |A| = {250, 500, 750, 1000}
and |A’| = 10 where each attribute is a hash output of SHA-512.

The ABC system was run for 1100 rounds with the first 100 rounds as warm-
up. Figure 2 displays the average computation times of the 101-th to 1100-th
rounds. At 128-bit security level, our show proofs can be completed within one
second at an attributes size of |A] < 650. At 256-bit security level, show proofs
are completed within three seconds at an attributes size of |A| < 250.

6 Discussion

6.1 Efficiently Enabling Composite Statements

Composite statements, such as, composed of multiple high-level conjunctions,
can be realized with MoniPoly efficiently. For that, we propose an efficient strat-
egy instead of naively repeating the show proofs multiple times for an access
policy with a composite statement.

The prover runs a proof of possession protocol followed by a proof to show
that the committed attributes from every clause in the composite statement is
part of the committed attributes in the credential. For instance, given the com-
posite statement stmt = AND(A]) A ANY (I, A}) where k1 = |A}], k2 = |4}], a
prover can run the showing protocol as follows. Let W4, = H?:_éﬁ ! a;vA/l’j Way, =

/ ’

| a2 W =117 a, 4% Ghere W'y, Yo< = r2xMPEncode(A—
j=0%j Ay — Llj=0 % Al GI0<jsn—ki —

45

A1), AWy, jo<j<n—t = 1 x MPEncode(A — 1), {m'y, , bocjck,—1 = 771 x

MPEncode(A5 — I) for a randomly selected r € Z7. Setting o', My, My, W as
public inputs, the prover runs the showing protocol on ¢gm: as follows:

PK{(p7T777L07"'7Ll;O—):

k l k2
mar s . —Mar1 _
13 / Ly 2o p, /—T\2
e | Wa, [[X, e | Wi, Way, [TX7 | e I] 9 (b7cP'"7)%, Xo
j=0 =0 j=0

9
Jj=

—e.%)}

k1 Mali ks Mab2,j o / o
where [[;1, X; 77, T[[2 a; Amay 1 o<j<k, = MPEncode(A}), {may 1 o<i<k, =
MPEncode(A}) are computed by the verifier and p = 72,7 = ¢/, v = y, {t; }o<j<i =

r X MPEncode(I),0 = ¢. It is thus obvious that for any composite statement of

k clauses, we can run the protocol above in a similarly way using k£ + 2 pairings.

In precise, the k+1 pairings on the left hand side correspond to the k clauses and

a credential. Lastly, the corresponding credential elements in the pairings at the

left hand side and right hand side are brought up to the power of k, respectively.

Note that the complexity of k£ + 2 parings does not change even when negation

clauses are involved.

6.1.1 Monotone Formulas. Our ABC system can well support access policy
with arbitrary monotone formulas in the form of proofs of partial knowledge but
at the cost of simulating additional |A’ — A| proofs in each presentation protocol.
As an example, let A = {Y,Z} and the monotone formula as stmt = XV (Y A Z).
Proof of partial knowledge requires two show proofs, a simulated proof for X and
a real proof for (Y AZ), with a total of 6 pairings. If we view them as a composite
statement stmt = (X V Y) A (X V Z), our show proof can be completed using 4
pairings.

Another alternative is to extend MoniPoly commitment scheme to adapt
the extractable collision-resistant hash (ECRH) function [9]. ECRH is used in
authenticated data structure (ADS) scheme [25] to support hierarchical set op-
erations. However, this may not be trivial as the ECRH secret key is generated
by the user in an ADS scheme, while it should be generated by the issuer in an
ABC system.

6.2 Interval Proof

Interval proofs can be realized in MoniPoly especially for moderately-sized in-
tervals. The range proof for general cases is equivalently costly as in the prime
encoding [18, 19|, requiring a sub-logarithmic communication complexity [15,
4, 26, 14]. At the same time, our ABC system can support efficient interval
proof in a range of common application scenarios. We give an example of age

46

interval proof with constant proof size where a prover wants to prove that he
is at least 18 year-old. Assuming the current date is 2 January 2020 and the
prover’s birthday is on 1 January 2002, we can have two redundant attributes
“byear = 2002”, “bmth = Jan2002” for “bday = 01Jan2002” in prover’s credential
so that the verifier can ask for a show proof on the statement:

NAND(“byear = 2020”, ..., “byear = 2003”,
“bmth = Feb2002”, ..., “bmth = Dec2002”,
“bday = 02Jan2002”, ..., “bday = 31Jan2002”),

which costs only three pairings when the credential contains |A4| > 17411430 =
58 attributes. In the case where |A| < 58, the prover breaks* the NAND statement
into a composite statement of [58/|A|] NAND clauses and prove them with
[58/]A[] + 2 pairings.

6.3 NIZK Proof

Using Fiat-Shamir Heuristic, our proposed ABC system can execute non-interactive
show proofs in the random oracle model. Another feasible solution is to extend
the SDH-CL signature into a structure preserving signature, which may be very
similar to the automorphic signature proposed by Abe et al. [1], to utilize GS
proof [10] in the common reference string model.

7 Conclusion

We introduced a new set commitment scheme which results in an efficient multi-
show ABC systems that supports show proofs on AND, OR, ANY and the corre-
sponding negation statements. Due to its expressive power, we devised stronger
security models for ABC system and subsequently proved its security against
impersonation and linkability in the standard model. The proposed ABC sys-
tem enjoys tight security reduction besides being the most expressive and secure
ABC system to-date under the unrestricted attribute space.

4 There maybe times a prover has to prove in this way because our show proof tech-
nique is bound by the condition |A’| < |A].

47

[1]

2]

3]

[4]

[5]
[6]

7]

8]

19]

[10]

Bibliography

Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments to
group elements. In Tal Rabin, editor, Advances in Cryptology — CRYPTO
2010, pages 209-236, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
Norio Akagi, Yoshifumi Manabe, and Tatsuaki Okamoto. An efficient anony-
mous credential system. In Gene Tsudik, editor, Financial Cryptography and
Data Security, pages 272—-286, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

Hiroaki Anada, Seiko Arita, and Kouichi Sakurai. Attribute-based two-tier
signatures: Definition and construction. In Soonhak Kwon and Aaram Yun,
editors, Information Security and Cryptology - ICISC 2015, pages 3649,
Cham, 2016. Springer International Publishing.

Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-taa. In
Roberto De Prisco and Moti Yung, editors, Security and Cryptography for
Networks, pages 111-125, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. Journal of Cryptology, Jan 2018.

Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré. Im-
proved algebraic macs and practical keyed-verification anonymous creden-
tials. In Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryp-
tography — SAC 2016, pages 360-380, Cham, 2017. Springer International
Publishing.

Nasima Begum, Toru Nakanishi, and Nobuo Funabiki. Efficient proofs for
cnf formulas on attributes in pairing-based anonymous credential system. In
Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, Information
Security and Cryptology — ICISC 2012, pages 495-509, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

Kai Bemmann, Johannes Blomer, Jan Bobolz, Henrik Brocher, Denis
Diemert, Fabian Eidens, Lukas Eilers, Jan Haltermann, Jakob Juhnke,
Burhan Otour, Laurens Porzenheim, Simon Pukrop, Erik Schilling, Michael
Schlichtig, and Marcel Stienemeier. Fully-featured anonymous credentials
with reputation system. In Proceedings of the 13th International Conference
on Availability, Reliability and Security, ARES 2018, pages 42:1-42:10, New
York, NY, USA, 2018. ACM.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 326-349, New York, NY,
USA, 2012. Association for Computing Machinery.

Olivier Blazy, Georg Fuchsbauer, Malika Izabachéne, Amandine Jambert,
Hervé Sibert, and Damien Vergnaud. Batch groth—sahai. In Jianying Zhou

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

and Moti Yung, editors, Applied Cryptography and Network Security, pages
218-235, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Johannes Blomer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Up-
datable anonymous credentials and applications to incentive systems. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 19, pages 1671-1685, New York, NY, USA,
2019. Association for Computing Machinery.

Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the sdh assumption in bilinear groups. Journal of Cryptology, 21(2):149-
177, Apr 2008.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matt Franklin, editor, Advances in Cryptology — CRYPTO 2004, pages
41-55, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Jonathan Bootle and Jens Groth. Efficient batch zero-knowledge arguments
for low degree polynomials. In Michel Abdalla and Ricardo Dahab, editors,
Public-Key Cryptography — PKC 2018, pages 561-588, Cham, 2018. Springer
International Publishing.

Fabrice Boudot. Efficient proofs that a committed number lies in an interval.
In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000,
pages 431444, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-
verification anonymous credentials on standard smart cards. In Gurpreet
Dhillon, Fredrik Karlsson, Karin Hedstrom, and André Zuquete, editors,
ICT Systems Security and Privacy Protection, pages 286-298, Cham, 2019.
Springer International Publishing.

Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology — ASTACRYPT 2015, pages 262—288, Berlin, Hei-
delberg, 2015. Springer Berlin Heidelberg.

Jan Camenisch and Thomas Grofs. Efficient attributes for anonymous cre-
dentials. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 345-356. ACM, 2008.

Jan Camenisch and Thomas Grofs. Efficient attributes for anonymous cre-
dentials. ACM Trans. Inf. Syst. Secur., 15(1):4:1-4:30, March 2012.

Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator
based on bilinear maps and efficient revocation for anonymous credentials.
In Stanistaw Jarecki and Gene Tsudik, editors, Public Key Cryptography —
PKC 2009, pages 481-500, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Laessge Mikkelsen,
Gregory Neven, and Michael @stergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography — SAC 2015, pages 3-24, Cham,
2016. Springer International Publishing.

49

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001,
pages 93-118, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi, edi-
tors, Security in Communication Networks, pages 268—289, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Matt Franklin, editor, Advances in Cryp-
tology — CRYPTO 2004, pages 56-72, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Trian-
dopoulos. Verifiable set operations over outsourced databases. In Hugo
Krawczyk, editor, Public-Key Cryptography — PKC 201/, pages 113-130,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat. Additive combinatorics
and discrete logarithm based range protocols. In Ron Steinfeld and Philip
Hawkes, editors, Information Security and Privacy, pages 336-351, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic macs and
keyed-verification anonymous credentials. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14,
pages 1205-1216, New York, NY, USA, 2014. ACM.

Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols em-
ploying asymmetric pairings - the role of ¢ revisited. Discrete Applied
Mathematics, 159(13):1311 — 1322, 2011.

David Chaum. Security without identification: Transaction systems to make
big brother obsolete. Commun. ACM, 28(10):1030-1044, October 1985.
Jung Hee Cheon. Security analysis of the strong diffie-hellman problem.
In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
pages 1-11, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Ivan Damgard. Commitment Schemes and Zero-Knowledge Protocols, pages
63-86. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

U. Feige and A. Shamir. Witness indistinguishable and witness hiding pro-
tocols. In Proceedings of the Twenty-second Annual ACM Symposium on
Theory of Computing, STOC 90, pages 416-426, New York, NY, USA,
1990. ACM.

The Apache Software Foundation. The apache milagro cryptographic li-
brary, 2019. https://github.com/miracl/amcl/tree/master/version3.

Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498-546, Apr 2019.

Thomas Grof. Signatures and efficient proofs on committed graphs and
np-statements. In Rainer Bohme and Tatsuaki Okamoto, editors, Financial
Cryptography and Data Security, pages 293-314, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

50

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Nan Guo, Tianhan Gao, and Jia Wang. Privacy-preserving and efficient
attributes proof based on selective aggregate cl-signature scheme. Interna-
tional Journal of Computer Mathematics, 93(2):273-288, 2016.

Malika Izabachéne, Benoit Libert, and Damien Vergnaud. Block-wise p-
signatures and non-interactive anonymous credentials with efficient at-
tributes. In Liqun Chen, editor, Cryptography and Coding, pages 431-450,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
Advances in Cryptology - ASIACRYPT 2010, pages 177-194, Berlin, Hei-
delberg, 2010. Springer Berlin Heidelberg.

Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signa-
tures from identification schemes. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology — CRYPTO 2016, pages 33-61, Berlin, Hei-
delberg, 2016. Springer Berlin Heidelberg.

Yutaro Kiyomura, Akiko Inoue, Yuto Kawahara, Masaya Yasuda, Tsuyoshi
Takagi, and Tetsutaro Kobayashi. Secure and efficient pairing at 256-bit
security level. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, Applied Cryptography and Network Security, pages 59-79, Cham,
2017. Springer International Publishing.

Guiwen Luo and Xiao Chen. Searching bn curves for sm9. In Fuchun Guo,
Xinyi Huang, and Moti Yung, editors, Information Security and Cryptology,
pages 554-567, Cham, 2019. Springer International Publishing.

Lan Nguyen. Accumulators from bilinear pairings and applications. In
Alfred Menezes, editor, Topics in Cryptology — CT-RSA 2005, pages 275—
292, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Tatsuaki Okamoto. Efficient blind and partially blind signatures without
random oracles. In Shai Halevi and Tal Rabin, editors, Theory of Cryptog-
raphy, pages 8099, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
Ryo Okishima and Toru Nakanishi. An anonymous credential system with
constant-size attribute proofs for cnf formulas with negations. In Nuttapong
Attrapadung and Takeshi Yagi, editors, Advances in Information and Com-
puter Security, pages 89-106, Cham, 2019. Springer International Publish-
ing.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos.
Optimal verification of operations on dynamic sets. In Phillip Rogaway,
editor, Advances in Cryptology — CRYPTO 2011, pages 91-110, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, Topics in Cryptology - CT-RSA 2016, pages 111-126,
Cham, 2016. Springer International Publishing.

Sietse Ringers, Eric Verheul, and Jaap-Henk Hoepman. An efficient self-
blindable attribute-based credential scheme. In Aggelos Kiayias, editor, Fi-
nancial Cryptography and Data Security, pages 3—20, Cham, 2017. Springer
International Publishing.

o1

[48] Shahidatul Sadiah, Toru Nakanishi, Nasima Begum, and Nobuo Funabiki.
Accumulator for monotone formulas and its application to anonymous cre-
dential system. Journal of Information Processing, 25:949-961, 2017.

[49] Sven Schige. Tight proofs for signature schemes without random oracles.
In Kenneth G. Paterson, editor, Advances in Cryptology — EUROCRYPT
2011, pages 189-206, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[50] Amang Sudarsono, Toru Nakanishi, and Nobuo Funabiki. Efficient proofs
of attributes in pairing-based anonymous credential system. In Simone
Fischer-Hiibner and Nicholas Hopper, editors, Privacy Enhancing Technolo-
gies, pages 246-263, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[51] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Black-
listable anonymous credentials: Blocking misbehaving users without ttps.
In Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS 07, pages 72-81, New York, NY, USA, 2007. ACM.

[52] Yan Zhang and Dengguo Feng. Efficient attribute proofs in anonymous cre-
dential using attribute-based cryptography. In Tat Wing Chim and Tsz Hon
Yuen, editors, Information and Communications Security, pages 408—415,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

A Finite-Attribute Attack

We briefly define a weak anonymity notion before presenting the finite-
attribute attack which can break the weak anonymity of Fuchsbauer et al.’s
ABC system [34]. In the weak anonymity security game, the adversary does not
has access to the issuer’s sk as well as cannot query to the Obtain, Issue, Prove
and Corrupt oracles. The adversary is also prohibited from playing the role of
issuer in the challenged issuing protocol for C’s selected attribute set during
the Challenge phase. Instead, the adversary can only query to a IssueTranscript
oracle which returns the transcript of an issuing protocol.

Definition 17. An adversary A is said to (twano, Ewano) -break the security against
weak anonymity of an ABC system if A runs in time at most tyano and further-
more:

1
|Prfb = b] = 51 > euano-

for a negligible probability eyano- We say that an ABC system is weakly-anonymous
if mo adversary (twano, Ewano)-Wins the weak anonymity game.

Fuchsbauer et al.’s anonymity model [34] does not allow the adversary to use
the attribute sets from corrupted credentials as the challenge. The IssueTranscript
oracle does not break this rule as the adversary does not corrupts the challenged
attribute sets but learn the corresponding issuing protocol transcript. However,
the weak anonymity defined above is incomparable to that by Fuchsbauer et
al. because the latter allows an adversary to collude with issuer but does not
allow the adversary to obtain the issuing protocol transcript of the (uncorrupted)

52

challenged attribute sets. We argue that allowing this ability is a necessity unless
we assume the existence of secure channel as in KVABC system [27, 6, 16].
Following the original notation [34], we denote S as the unrestricted attribute
universe of the ABC system in the practice, which may contain known-format
string attributes and a fixed amount of finite-attributes [50, 52]. For instance,
an attribute set A contained in a credential cred may include name, age, gender,
social number, driving license and so on. These attributes are finitely many and
can be generated in polynomial time. We explain how does an adversary A break
the weak anonymity of Fuchsbauer et al.’s ABC system (Section 5.4, [34]) using
a single transcript of issuing protocol as follows.

1. Aknows the public parameters of set commitment scheme pps. = (BG, (a*P, ai]s)ie[t])
from the organization public key opk. A also knows user public key upk =
usk - P=p- P.

2. A announces the challenge attribute sets Ay and A; as well as the disclosure
attribute set D.

3. A observes the issuing protocol for the attribute set A; selected by challenger
and obtains (C, R = r - C,0) through the observation. .

4. A assumes b = 0 and checks whether e(C, P) = e(upk,Zf:0 fia'P) where
Ao = {501,504} and fa,(a) = [[i_;(a — s0.4) = i, fia'.

5. If the equation hold, A outputs his guess as b’ = 0 and & = 1 otherwise.

We can see that A is always successful in making a correct guess b = b’. During
every check, the issuer needs to perform only %(t2 + 3t — 4) + 1 multiplications
and additions, respectively, in Z, to find® {fo,..., f;}, t — 1 point scalar multi-
plications, t+1 point additions and two pairing operations. In order to guarantee
a result, the issuer can repeat the process for (E‘) rounds and this resulted in a
total complexity of:

tg + <|§|> <(;(24 3t—4)+ 1)(tm + 1) + t(tm +ta) + tp) +tp
where tg is the time to compile the attribute set S, ¢, and ¢,, are the time taken
for an addition and a multiplication in Z,, tm is the time taken for a scalar
multiplication in Go, tp is the time taken for a point addition and t¢p is the
time taken for a bilinear pairing operation. The complexity is in polynomial
time and it can be further reduced if proper classification is done prior to the
brute force searching. For instance, the issuer can choose not to combine the
attributes bday : 01Jan2002; ..., bday : 31Dec2002 at the same time inside A. A
workaround for this issue is to employ a secure channel for the issuing protocol,
or send C| R in encrypted form using issuer’s public key.

B Full Attribute Unlinkability Implies Full Anonymity

We show that full attribute unlinkability implies full attribute anonymity in an
ABC system but the reverse is not true.

% We assume Algorithm 1 is used.

53

Theorem 7. If an adversary Aaunl (taunl, €aunt) -breaks the aunl-aca-security of an
ABC system, it also (tano, Eano)-breaks the anon-aca-security of the ABC system.

Proof. Assume full anonymity adversary A.,, exists, we can construct a full
unlinkability adversary A,un to break the full unlinkability of the ABC system
with the help from Ajno.

When A,y receives (pk, sk) from its oracle, it passes that to A.n.. Since
Aaunt knows sk, it can answer all the queries from A,,,. When A,,, decides
the challenge attribute sets A*, Ag, A1, Aaun uses them as its challenge. When
Aano makes a query for the challenge issuing protocol, A, acts as a man-in-
the-middle to pass the messages in between A,,, and its challenge oracles. In
precise, when A,,, obtains two sets of answer, i.e., runs two issuing protocols
with its challenge oracles, it always acts as the man-in-the-middle for the b-th
set of answer to complete the challenge issuing protocol with A,,,. Similarly,
Aaun answers the query on the challenge proof of possession protocol for A,
by using the b-th set answer. When A,,, outputs the guess b, A,un outputs o’
as its guess. It is clear that if b = b/, Ay, wins the full attribute unlinkability
game.

Now we explain why the opposite reduction does not hold. Consider the same
security game as above but with the position of A,y and A, interchanged.
When A, queries on its challenge attribute sets, it expects to receive replies
from the challenge oracle for both attribute sets. However, A,,, can obtain only
a reply for the challenge attribute set A; from its challenge oracle, and have
to simulate another attribute set A;_; itself. Subsequently, A.,, has to guess
with probability 1/2 which attribute set is A;_; and Aaun’s guess of ¥’ is valid®
only when A,,, guessed the correct attribute set A;_p. Therefore, it is clear that
Aaunl does not increase the advantage of A, in breaking the full anonymity of
an ABC system. This confirms that A, is a subset of A,un-

C Full Attribute Unlinkability vs. Full Protocol
Unlinkability

We show that there is no reduction between full attribute unlinkability and full
protocol unlinkability.

Consider the security game in Appendix B but A,n, is replaced with Apyni.
Since Auuni and Apyn both select two attribute sets A, A; as the challenge
and receive two sets of issuing and presentation transcripts during the challenge
phase, A.un can simulate the environment for A,,n perfectly. However, when
Apunl outputs a guess which is a pair of issuing and show proof transcripts,
Aauni cannot extract useful information to assist in making the correct guess
b. Therefore, it is clear that Ay, does not increase the advantage of Ay, in
breaking the full attribute unlinkability of an ABC system. When the position of

6 We assume A,un makes a random guess on b’ instead of aborting the game, if it
notices the two challenge protocols are under the same attribute set.

o4

Aaunl and Apyn are interchanged such that Agyn simulates the environment for
Aauni, the same problem occurs during the guessing phase. This confirms that
Aaunl and Apun are independent of each other.

D Protocol Details

The constructions for the zero knowledge protocols in the proposed ABC system
are as follows.

D.1 Issuing Protocol Initialization

1. User randomly selects s1,mo,...,m;, € Z; and sends M, R = H;:O a;ﬁj b1
to the issuer.

2. Issuer replies with a challenge e € Z.

3. User sends the response s; = s1 + esy, mg = mg + emg, ..., M, = m, +em,

to the issuer.

4. Issuer proceeds to the next step if:

n no
H a;_nj b§1 _ H a;anremj b§1+631
j=0 j=0

no n
_ m; g5, H €mjzes,
= Haj b a; b
j=0 j=0
= RM*®

holds. Else, issuer outputs L and stops.

D.2 Proof of Possession Protocol

1. Prover chooses r,y, 7,7, t,, 00,061, § € Z} and sends v/ = oYW = H?;& a;',V =
VY = b Yy = H;:o X7 to verifier where {w/} = rxMPEncode(A—
{o}).

2. Verifier replies with a random challenge e € Z;.

3. Prover responds with 7 = 74er?, § = §+ey, tAy = tNy—ety, 09 = O0p+eogr, 01 =
01 + €017, § = § + esr? where {og, 01} = MPEncode({0}).

35

4. Verifier outputs 1 if the equation e(W,Y, ! H;:O X?")e(Yflbgc%’{y,Xo) =
e(v'V~1, X) holds such that:

1
-1 6; —138 7, 1,
e [WY, X7 | e(Y 10"y, Xo)
j=0
1 1
— 0. O . s = = 2 - 2 -
—e VV,HX] 0, HX;]+€OJT e(b 5. rvl tybs+esr CrJrer ,Ulty ety’XO)
j=0 j=0

€T2

n

s 2 2
—e H a; i X, e<besr e U/ety7X0>
j=0
2

er
n

- m; _ 2
=e HaijSc v X
j=0

67'2

n
m; —
=e Haj’bscv t Xo
j=0

2

=e(v”,X)*=e(vV 1, X)

and 0 otherwise, where {m,} = MPEncode(A).

D.3 AND Proof

The detailed show proof for ¢anp(ar is as follows:

1. Verifier requests an AND proof for the attribute set A’ = {mg, ..., my}.

2. If A ¢ A, prover aborts and verifier outputs 0.

3. Else, prover chooses 7,y,7,7,1,,5 € Zy and sends v' = v”/717V =09 W =
H;:(f a;-v;,Y = b%c™v' to verifier where {w/}o<j<n—1 = x MPEncode(A —
A').

4. Verifier replies with a random challenge e € Z7.

5. Prover responds with # =7 +er, g =y + ey, t; = t~y —ety,5 =5+ esr.

6. Verifier outputs 1 if the equation

k
e (W J[XT | e(Y 100", Xp) = e(v'V 1, X)
§=0

56

holds such that:
k ~
e[we T[XT | e (Y—lb%wtv,xo)
§=0

n—k k
ew;r m; 5 —F 1—t. 15§ 7 C
—e H aj j aHXj ile (b 5. T,U/ tybs-‘resrcr-i-ervlty Ety,X())
j=0 j=0

_ e(v:p«ktvft7 Xo)er

e(v", X) =e(vV 1 X)

and 0 otherwise, where {m;} = MPEncode(A’) are computed by the verifier.

D.4 ANY Proof

The detailed show proof for ¢any (/) is as follows:

1. Verifier requests a show proof ¢any(;, 47y on the attribute set A" = {my,...,my}.

2. Prover randomly selects [-attribute intersection set I C (A’ N A). If no such
I can be formed, prover aborts and verifier outputs 0.

~ o~ ~ [~ 7 s ~ 2, —1
3. Else, prover chooses r,y, 7,7, §, ty, o, - . ., i1, § € Z,, and sends v=0v"Y V=
1w et mag\T - ! H
1y — n— J ! - 2,3 _ 1S T, _ J
VW = [0 al W —(szoaj) Y1 = b, Yy = [Ty X7 to
verifier where {W’}o<j<n—1 = 7 x MPEncode(A — I) and {my;}o<j<k—1 =

MPEncode(A’ —I).
4. Verifier replies with a random challenge e € Z7.

5. Prover calculates {ij}; = IE/IPEncode(I)Aandfesponds with # = 7 + er? § =

g]+ey,tAy:t;fety,io:i0+eior,...,il:il+eilr,§:§+esr2.

6. Verifier outputs 1 if the equation holds:
L k -)
e | WW, Y, ! H X7 |e H aj’ Yot X | = e (vIVT X))
§=0

=0

o7

such that:

—e€

[k
e[WW Y T xY el [[[af | Yi'o'cv™. Xo
j=0 =0

f[m2] f[awjr HX |J HX|J+6|J
j=0 j=0

k
H 7em1 Jb s —rv/ tybs+esr r+ef‘2,U/t~y—ety7X0

j=0

2

k k

em; —em; [T)—, (&' +my) er s —t er?
||a]]”a] 7 X e(aO] , Xo e (b°cv™", Xo)
Jj=0 Jj=0

= e(v" v, X))

= e(v’” X)) =e(VIVTLX)

and verifier outputs 0 otherwise, where {m; ;} = MPEncode(A4’) are com-
puted by the verifier.

D.5 NAND Proof

The detailed show proof for ¢gnanp(a) is as follows:

1. Verifier request a NAND proof for the attributes A" = {mq, ..., my}.

2. If |A’ N A| < k, prover aborts and verifier outputs 0.

3. Else, prover chooses ,y, 7, 4,1y, 5 € Z3 and sends v' = oYLV =0 W =
(H? (fawl J) Wy = (Hf 3ay“)r = b°c™v't to verifier where
({w1,; Yo<j<n—k, {w2,j }o<j<k—1) = MPEncode(A)/MPEncode(A’).

4. Verifier replies with a random challenge e € Z7.
5. Prover responds with # =7+ er,y =y + ey, tAy = t~y —ety,§ = 8§+ esr.
6. Verifier outputs 1 if the two equations hold:

(a) W1 # Gy

(b) Wa # 1g,

(c) e(We, TTE_y X™)e (W; —LpB oty Xo) —e (vIV1, X)

58

and 0 otherwise, where {m;} = MPEncode(A’) are computed by the verifier.
The correctness for the equations is as shown below:

k
e m; —1:8 7 /t
e | W [X e(be vXO)
Jj=0
n—=k
(Mo T
k—1
H a;WZ,ij—sc—rvl—ty bs+esrcr+ervlty—ety7 XO
j=0

er

. k—1
TT7_ (2 +my) = wa, o' “ Wairs i
el ag : , Xo e Haj'bcv , X
=0

— e(v“”+tv_t,X0)eT
e(v”, X)¢ = e(v''V 1 X).

D.6 NANY Proof

The detailed show proof for ¢nany(i,ar) is as follows:

1. Verifier requests an NANY (I, A”) proof for the attribute set A’ = {mq,...,my}.

2. Prover randomly selects [-attribute difference set D € (A’ — A). If no such
D can be formed, prover aborts and verifier outputs 0.

- o~ o~ ~ . 2 —1
3. Else, prover chooses 7,y,7,9,ty,do, ...,d;, s € Z, and sends =0"Y [V =
—1

2
7 T 7 T T T
19 n—Il wij -1 w2 ; / k=1 mg
v Wy = (||j_0aj]) Wy = (||] 04 J) W= <||j 04; J) Y1

bt Yy = H] 0Xd”‘novemﬁerwhere ({w1,jYo<j<n—k, {Wa,j bo<j<k—1) =
MPEncode()/MPEncode(A’).

4. Verifier replies with a random challenge e € Zj.
5. Prover calculates {d; } = MPEncode(D) and responds with # = 7 + er? § =
U+ ey, ty =ty —ety,do = do + edor, ..., d; = dj + edjr, § = 5 + esr?.
6. Verifier outputs 1 if the two equatlons hold:
(a) W1 # Gy
(b) W3 # Gy
() e (W’Wl, Y T, Xjf) e ((Hfo a;“’j) Wy X0>
=e(VIVL X)

99

and outputs 0 otherwise, where {m; ;} = MPEncode(A’). The correctness
for the equations are as shown below:

—e€

T k
_ d; ; —138 7 L
e | Wwi, s ' X5 e | [T WY o't X
j=0 j=0

k—1 L n—I T ol -
_ r_nQ,jr* H ewr ;T H lfdj H (_ij+edr
e H aJ aJ ’ XJ X]
j=0 Jj=0 j=0 j=0

e
k -1 R
my ews ;T 7 5 —F J—f 135 2 7 2 e
e Haj 1,5 Haj 2,5 b3 rv/ tybs+esr cr+er U/ty ety,XO

2
2 er

~) -1
[T} (@' +my) = S h2h wa a7 < wagps ot
=|ay , Xo e Haj’bcv , Xo
Jj=0

— e(vzﬂv*t, Xo)er2

2

=e(v”,X)*=e (V! X).

Complexity Comparison

Table 9: Comparison of credential size, and complexity for proof of possession
and AND proof on related ABC systems.

S ABC Credential Size Proof of Possession Complexity AND Proof Complexity
; 2M1 (1) + 26M1(2) + 3Mi (nr) 4+ 25M3(2) 4+ 4M>(4) + 2M1 (1) + 24M1(2) + 3Mi (kr) 4+ 25M2(2) + 4Ma(4) +
2 np/2 (np/2) (e i 1 1
Sp SNBF [48]* npl+2305/? ("5/%)(2]G1[+5|G2l) 30z (1) + 40P 3Mr (1) + 40P
44112 TAM: (1) + (3L + 2)M1(2) + 45M1(3) + 75M1(15) + T4M; (1) + 3LM1(2) + 45M:(3) + 7T5M1 (15) + 5M7(1) +
ON 44l +7|G] 5My(1) + 105P 105P
SNF [50]' npI+5(Gi1| + (ns +3)|Z,| 2301 (1) 4801 (2) 4601 (3) 420 (ns+5)+ M (1) +10p 23Mi(1) + 8Mi(2) + 6M(3) + 2Mi(ns — ks +5) +
Ss 48 M (ks) + Mz(1) + 10P
s " morl . P 18M1(1) 4 2Mi (ns + 5) + 10M1(2) + 2M1(3) + 18Mi (1) + 2Mi (ns — ks +5) + Mi(ks) + 10M1(2) +
ZF [52] npl+(np +6)|Gi| + (ns +2)[Zp]) V(N [(N)) (N [Nk
Mi(np — 1)+ My(N —2) + My(N +np —2) + 11P 2M1(3)+ My (kp—1)+ My (N —2)+ M (N +kp—2)+11P
, UZn |+ UZnww] + UZy42] + ; 5 4
CG [18, 19| . . E(1) +2E(3 s)+ E(2 3E(1) +2E(3 +ns — ks) + E(ks
[18, 19] | Zatya] + ns|Zad] (1) +2EB +ns) + E(2) (1) +2E(3 + ns — ks) + E(ks)
ASM [4, 20] 1|Gi|+ (n+2)|Zy] 2M (1) + 3M;(2) + 2M1(3) + 2M1 (3 +n) + 2P 2M (1) +3My(2)+2M1 (3)+2My (3+n—k)+ M, (k) +2P
2 2M1(2) + 2M1(8) + 2M1(2n) 4+ 2Ma(1) + 34M2(2) + 2M1(2) + 2M1(8) + My (k) + M1 (2n — 2k) 4+ 2Mo(1) +
2 G G 1
s CDHK [17]* (n+ 5)|G:| + 2G| 2Mrp(1) + 28P Ma (k) + 34 Mz (2) + 2M7 (1) + 28P
FHS [34] (n+3)|G1] + 1|G2| + 2|Zy| 10M; (1) 4+ 2Mi(n+ 1) + 8P 10M; (1) + Mi(n — k+ 1) + Ma(k + 1) + 8P
BBBB™ [8, 11] 2|Gy| + n|Z,| 2M3(n) + 2P 2Mz(n — k) + Ma(k) + 2P
This Work 1|G1| + (3n + 3)|Z,| 3Mi(1) + 2M,(3) + Mi(n — 1) + 2M5(2) 4+ 3P 3My(1) +2M,(3) + Mi(n — k) + Ma(k+1) + 3P
Note: TType-1 pairing scheme, ~assume batch GS-proof [10] is used, p: group order, n: total attributes,S: string attributes, F: finite-attributes, L: maximum allowed A in CNF,
N: maximum attributes allowed in a statement, |- |: element size,M,(-): multi-exponentiation in G, P: pairing, N: RSA modulus, M: attribute space, «: security parameter,

E(-): multi-exponent

not
the

iation, I: attribute index.

We consider only proof of possession and AND proof in Table 9 because
every scheme from Table 7 can support OR proof and above. Also, due to
different natures of the ABC systems, the numbers in Table 9 is a con-

servative estimation and we argue that the result is adequately generated. For
instance, we include attributes in the credential for every ABC system where the

60

credential size may be higher than what it was in the original works. Besides,
we exclude computations for proprietary properties such as encoding [18, 19],
pseudonymization [20, 8] and revocation [11] which are not covered by our defi-
nition. We also perform trivial optimization on the protocols, such as compress-
ing the pairings [4, 20, 50, 52] and using batch GS-proof [17, 48, 44]. Notice
that we denote our credential size as 1|G1| + (3n + 3)|Z,| but not 1|Gq| +
(n + 2)|Z,| as in Section 4.3. The extra (2n + 1)|Z,| elements are from the
pre-processing for MPEncode(A) and MPEncode(A — {o}). Since some ABC sys-
tems [50, 52, 17, 34, 8, 11] have not specified their proof of possession protocol,
we assume the Schnorr-like proof of knowledge protocol is used. For the ABC
systems work with Sg, we assume their accumulator values are also committed
during the proof of possession protocol. Finally, viewing M, (y) = y x M, (1), we
have the the numbers displayed in Table 8.

61

